Cisco Certified Network Professional (CCNP) - Data Center
1 Data Center Technologies
1-1 Data Center Fundamentals
1-1 1 Data Center Concepts
1-1 2 Data Center Infrastructure
1-1 3 Data Center Services
1-1 4 Data Center Design Principles
1-2 Data Center Network Architecture
1-2 1 Network Design Models
1-2 2 Network Virtualization
1-2 3 Network Automation
1-2 4 Network Security
1-3 Data Center Storage
1-3 1 Storage Technologies
1-3 2 Storage Area Networks (SAN)
1-3 3 Network Attached Storage (NAS)
1-3 4 Storage Virtualization
1-4 Data Center Compute
1-4 1 Server Technologies
1-4 2 Server Virtualization
1-4 3 Hypervisors
1-4 4 Virtual Machine Management
1-5 Data Center Management
1-5 1 Data Center Management Tools
1-5 2 Monitoring and Troubleshooting
1-5 3 Capacity Planning
1-5 4 Compliance and Governance
2 Data Center Infrastructure
2-1 Physical Infrastructure
2-1 1 Building and Site Considerations
2-1 2 Power and Cooling
2-1 3 Cabling and Connectivity
2-1 4 Physical Security
2-2 Network Infrastructure
2-2 1 Network Topologies
2-2 2 Switching and Routing
2-2 3 Load Balancing
2-2 4 High Availability
2-3 Storage Infrastructure
2-3 1 Storage Arrays
2-3 2 Storage Protocols
2-3 3 Storage Networking
2-3 4 Backup and Recovery
2-4 Compute Infrastructure
2-4 1 Server Hardware
2-4 2 Server Deployment
2-4 3 Resource Management
2-4 4 Scalability and Flexibility
3 Data Center Operations
3-1 Data Center Management Systems
3-1 1 Management Platforms
3-1 2 Automation Tools
3-1 3 Monitoring Solutions
3-1 4 Reporting and Analytics
3-2 Data Center Security
3-2 1 Security Policies
3-2 2 Access Control
3-2 3 Threat Detection
3-2 4 Incident Response
3-3 Data Center Maintenance
3-3 1 Preventive Maintenance
3-3 2 Corrective Maintenance
3-3 3 Asset Management
3-3 4 Documentation and Records
3-4 Data Center Optimization
3-4 1 Performance Tuning
3-4 2 Resource Optimization
3-4 3 Energy Efficiency
3-4 4 Continuous Improvement
4 Data Center Design
4-1 Design Principles
4-1 1 Scalability
4-1 2 Flexibility
4-1 3 Resilience
4-1 4 Cost Efficiency
4-2 Design Considerations
4-2 1 Business Requirements
4-2 2 Technical Requirements
4-2 3 Compliance Requirements
4-2 4 Future Growth
4-3 Design Process
4-3 1 Needs Assessment
4-3 2 Design Development
4-3 3 Implementation Planning
4-3 4 Testing and Validation
4-4 Design Tools
4-4 1 Design Software
4-4 2 Simulation Tools
4-4 3 Modeling Tools
4-4 4 Collaboration Tools
5 Data Center Evolution
5-1 Trends in Data Center Technology
5-1 1 Cloud Computing
5-1 2 Edge Computing
5-1 3 Software-Defined Data Centers
5-1 4 Artificial Intelligence in Data Centers
5-2 Data Center Modernization
5-2 1 Legacy System Migration
5-2 2 Infrastructure Upgrades
5-2 3 Technology Integration
5-2 4 Future-Proofing
5-3 Data Center Sustainability
5-3 1 Energy Management
5-3 2 Waste Reduction
5-3 3 Environmental Impact
5-3 4 Green Data Centers
5-4 Data Center Innovation
5-4 1 Emerging Technologies
5-4 2 Research and Development
5-4 3 Industry Collaboration
5-4 4 Innovation Strategies
2-4 Compute Infrastructure Explained

2-4 Compute Infrastructure Explained

Key Concepts

Server Types

Server types refer to the different categories of servers based on their functionality and performance capabilities. Common server types include:

Virtualization

Virtualization is the process of creating a virtual version of a resource, such as a server, storage device, or network. It allows multiple virtual machines (VMs) to run on a single physical server, maximizing resource utilization.

Example: A data center uses virtualization to run multiple VMs on a single physical server. Each VM can run a different operating system and application, increasing efficiency and reducing hardware costs.

Hypervisors

Hypervisors are software platforms that enable the creation and management of virtual machines. There are two main types of hypervisors:

Example: A data center uses a Type 1 hypervisor like VMware ESXi to manage multiple VMs on a physical server, ensuring efficient resource allocation and isolation between VMs.

Resource Management

Resource management involves allocating and managing compute resources such as CPU, memory, and storage to ensure optimal performance and availability. Techniques include:

High-Performance Computing (HPC)

High-Performance Computing (HPC) involves using powerful computing resources to solve complex scientific, engineering, and business problems. HPC clusters consist of multiple interconnected servers that work together to process large datasets and perform complex calculations.

Example: A research institution uses an HPC cluster to simulate climate change models. The cluster consists of multiple servers connected via high-speed networks, allowing for parallel processing of large datasets and complex calculations.