Cisco Certified Technician (CCT) - Routing & Switching
1 Introduction to Networking
1-1 Networking Concepts
1-2 Network Components
1-3 Network Types
1-4 Network Topologies
1-5 Network Standards and Protocols
2 Cisco Networking Fundamentals
2-1 Cisco Network Devices
2-2 Cisco IOS Basics
2-3 Basic Configuration Commands
2-4 Device Management
2-5 Basic Troubleshooting Tools
3 IP Addressing and Subnetting
3-1 IPv4 Addressing
3-2 IPv6 Addressing
3-3 Subnetting Concepts
3-4 VLSM (Variable Length Subnet Masking)
3-5 IP Address Management
4 Routing Protocols and Concepts
4-1 Static Routing
4-2 Dynamic Routing Protocols
4-3 Distance Vector Routing Protocols
4-4 Link-State Routing Protocols
4-5 Routing Protocol Configuration
5 Switching Technologies
5-1 LAN Switching Basics
5-2 VLANs (Virtual LANs)
5-3 Trunking and Inter-VLAN Routing
5-4 Spanning Tree Protocol (STP)
5-5 EtherChannel
6 Network Security
6-1 Basic Security Concepts
6-2 Access Control Lists (ACLs)
6-3 Network Device Security
6-4 Secure Management Practices
6-5 Threat Mitigation Techniques
7 Network Services
7-1 DHCP (Dynamic Host Configuration Protocol)
7-2 DNS (Domain Name System)
7-3 NAT (Network Address Translation)
7-4 NTP (Network Time Protocol)
7-5 Quality of Service (QoS)
8 Troubleshooting and Maintenance
8-1 Troubleshooting Methodologies
8-2 Common Network Issues
8-3 Diagnostic Tools and Commands
8-4 Log Analysis
8-5 Backup and Restore Procedures
9 Network Automation and Programmability
9-1 Introduction to Network Automation
9-2 Scripting for Network Management
9-3 RESTful APIs and Network Programmability
9-4 Network Configuration Automation
9-5 Network Monitoring and Reporting Automation
10 Final Preparation
10-1 Exam Objectives Review
10-2 Practice Labs and Scenarios
10-3 Mock Exams
10-4 Study Tips and Strategies
10-5 Certification Exam Registration and Preparation
Network Components Explained

Network Components Explained

1. Routers

Routers are essential network devices that connect multiple networks together and route data packets between them. They determine the best path for data to travel based on network conditions and routing protocols. Routers use IP addresses to forward packets to their destination, ensuring efficient and reliable data transmission.

Think of a router as a traffic controller at a busy intersection. It directs data packets (vehicles) to the correct network (road) based on their destination address (street name). This ensures that data reaches its intended destination without congestion or delays.

2. Switches

Switches are network devices that connect multiple devices within a single network. They use MAC addresses to forward data packets to the correct device, ensuring that data is delivered efficiently within the local network. Switches operate at the data link layer of the OSI model and are crucial for managing network traffic and optimizing performance.

Imagine a switch as a multi-port bridge that connects various devices (computers, printers, etc.) in an office. It ensures that data sent from one device reaches only the intended recipient, similar to how a mail sorter directs letters to the correct mailbox.