Databases
1 Introduction to Databases
1-1 Definition of Databases
1-2 Importance of Databases in Modern Applications
1-3 Types of Databases
1-3 1 Relational Databases
1-3 2 NoSQL Databases
1-3 3 Object-Oriented Databases
1-3 4 Graph Databases
1-4 Database Management Systems (DBMS)
1-4 1 Functions of a DBMS
1-4 2 Popular DBMS Software
1-5 Database Architecture
1-5 1 Centralized vs Distributed Databases
1-5 2 Client-Server Architecture
1-5 3 Cloud-Based Databases
2 Relational Database Concepts
2-1 Introduction to Relational Databases
2-2 Tables, Rows, and Columns
2-3 Keys in Relational Databases
2-3 1 Primary Key
2-3 2 Foreign Key
2-3 3 Composite Key
2-4 Relationships between Tables
2-4 1 One-to-One
2-4 2 One-to-Many
2-4 3 Many-to-Many
2-5 Normalization
2-5 1 First Normal Form (1NF)
2-5 2 Second Normal Form (2NF)
2-5 3 Third Normal Form (3NF)
2-5 4 Boyce-Codd Normal Form (BCNF)
3 SQL (Structured Query Language)
3-1 Introduction to SQL
3-2 SQL Data Types
3-3 SQL Commands
3-3 1 Data Definition Language (DDL)
3-3 1-1 CREATE
3-3 1-2 ALTER
3-3 1-3 DROP
3-3 2 Data Manipulation Language (DML)
3-3 2-1 SELECT
3-3 2-2 INSERT
3-3 2-3 UPDATE
3-3 2-4 DELETE
3-3 3 Data Control Language (DCL)
3-3 3-1 GRANT
3-3 3-2 REVOKE
3-3 4 Transaction Control Language (TCL)
3-3 4-1 COMMIT
3-3 4-2 ROLLBACK
3-3 4-3 SAVEPOINT
3-4 SQL Joins
3-4 1 INNER JOIN
3-4 2 LEFT JOIN
3-4 3 RIGHT JOIN
3-4 4 FULL JOIN
3-4 5 CROSS JOIN
3-5 Subqueries and Nested Queries
3-6 SQL Functions
3-6 1 Aggregate Functions
3-6 2 Scalar Functions
4 Database Design
4-1 Entity-Relationship (ER) Modeling
4-2 ER Diagrams
4-3 Converting ER Diagrams to Relational Schemas
4-4 Database Design Best Practices
4-5 Case Studies in Database Design
5 NoSQL Databases
5-1 Introduction to NoSQL Databases
5-2 Types of NoSQL Databases
5-2 1 Document Stores
5-2 2 Key-Value Stores
5-2 3 Column Family Stores
5-2 4 Graph Databases
5-3 NoSQL Data Models
5-4 Advantages and Disadvantages of NoSQL Databases
5-5 Popular NoSQL Databases
6 Database Administration
6-1 Roles and Responsibilities of a Database Administrator (DBA)
6-2 Database Security
6-2 1 Authentication and Authorization
6-2 2 Data Encryption
6-2 3 Backup and Recovery
6-3 Performance Tuning
6-3 1 Indexing
6-3 2 Query Optimization
6-3 3 Database Partitioning
6-4 Database Maintenance
6-4 1 Regular Backups
6-4 2 Monitoring and Alerts
6-4 3 Patching and Upgrading
7 Advanced Database Concepts
7-1 Transactions and Concurrency Control
7-1 1 ACID Properties
7-1 2 Locking Mechanisms
7-1 3 Isolation Levels
7-2 Distributed Databases
7-2 1 CAP Theorem
7-2 2 Sharding
7-2 3 Replication
7-3 Data Warehousing
7-3 1 ETL Processes
7-3 2 OLAP vs OLTP
7-3 3 Data Marts and Data Lakes
7-4 Big Data and Databases
7-4 1 Hadoop and HDFS
7-4 2 MapReduce
7-4 3 Spark
8 Emerging Trends in Databases
8-1 NewSQL Databases
8-2 Time-Series Databases
8-3 Multi-Model Databases
8-4 Blockchain and Databases
8-5 AI and Machine Learning in Databases
9 Practical Applications and Case Studies
9-1 Real-World Database Applications
9-2 Case Studies in Different Industries
9-3 Hands-On Projects
9-4 Troubleshooting Common Database Issues
10 Certification Exam Preparation
10-1 Exam Format and Structure
10-2 Sample Questions and Practice Tests
10-3 Study Tips and Resources
10-4 Final Review and Mock Exams
3-3-1-1 CREATE Explained

3-3-1-1 CREATE Explained

Key Concepts

CREATE Statement

The CREATE statement in SQL is used to create new database objects such as tables, indexes, views, and schemas. In the context of tables, the CREATE TABLE statement is used to define the structure of a new table, including its columns, data types, and constraints.

Tables

A table is a fundamental object in a relational database that stores data in a structured format. Each table consists of rows and columns. Rows represent individual records, while columns represent attributes or properties of those records.

Columns

Columns in a table define the attributes of the data stored in the table. Each column has a name and a data type that specifies the kind of data it can hold, such as integers, text, dates, etc. Columns can also have additional constraints to enforce data integrity.

Data Types

Data types define the type of data that can be stored in a column. Common data types include:

Constraints

Constraints are rules applied to columns to ensure data integrity. Common constraints include:

Examples

Example: Creating a Table

The following SQL statement creates a table named "Employees" with columns for EmployeeID, FirstName, LastName, and HireDate:

        CREATE TABLE Employees (
            EmployeeID INT PRIMARY KEY,
            FirstName VARCHAR(50) NOT NULL,
            LastName VARCHAR(50) NOT NULL,
            HireDate DATE
        );
    

In this example, EmployeeID is the primary key, ensuring each employee has a unique identifier. The FirstName and LastName columns cannot be NULL, and HireDate stores the date of hire.

Analogy: Building a Spreadsheet

Think of creating a table in SQL as building a new spreadsheet. Each column in the table is like a column in the spreadsheet, and each row is like a row in the spreadsheet. The data types define what kind of data can be entered into each cell, and constraints ensure that the data is accurate and consistent.

Conclusion

Understanding the CREATE statement and its components is essential for defining the structure of tables in a relational database. By specifying columns, data types, and constraints, you can create tables that store data efficiently and maintain data integrity. Visualizing these concepts through practical examples and analogies can enhance your understanding and application of SQL in database management.