Cisco Certified Design Professional (CCDP) - Enterprise
1 Enterprise Architecture and Design Principles
1-1 Enterprise Network Design Concepts
1-1 1 Network Design Life Cycle
1-1 2 Design Considerations for Enterprise Networks
1-1 3 Network Segmentation and Micro-Segmentation
1-1 4 Network Security Design Principles
1-1 5 Network Scalability and Performance
1-1 6 Network Resilience and Redundancy
1-1 7 Network Automation and Programmability
1-1 8 Network Virtualization and SDN
1-1 9 Network Management and Monitoring
1-1 10 Compliance and Regulatory Requirements
1-2 Enterprise Network Design Models
1-2 1 Hierarchical Network Design Model
1-2 2 Spine-Leaf Architecture
1-2 3 Modular Network Design
1-2 4 Centralized vs Distributed Network Design
1-2 5 Hybrid Network Design Models
1-3 Enterprise Network Design Tools and Methodologies
1-3 1 Network Design Documentation
1-3 2 Network Design Software Tools
1-3 3 Network Design Methodologies (e g , TOGAF, Zachman)
1-3 4 Network Design Best Practices
2 Enterprise Network Infrastructure Design
2-1 Campus Network Design
2-1 1 Campus Network Topologies
2-1 2 Campus Network Access Layer Design
2-1 3 Campus Network Distribution Layer Design
2-1 4 Campus Network Core Layer Design
2-1 5 Campus Network Wireless Design
2-1 6 Campus Network Security Design
2-1 7 Campus Network Management and Monitoring
2-2 Data Center Network Design
2-2 1 Data Center Network Topologies
2-2 2 Data Center Network Fabric Design
2-2 3 Data Center Network Redundancy and Resilience
2-2 4 Data Center Network Security Design
2-2 5 Data Center Network Virtualization
2-2 6 Data Center Network Automation
2-2 7 Data Center Network Management and Monitoring
2-3 WAN Design
2-3 1 WAN Topologies
2-3 2 WAN Connectivity Options (e g , MPLS, VPN, Internet)
2-3 3 WAN Optimization Techniques
2-3 4 WAN Security Design
2-3 5 WAN Management and Monitoring
2-4 Cloud and Hybrid Network Design
2-4 1 Cloud Network Design Principles
2-4 2 Hybrid Network Design
2-4 3 Cloud Connectivity Options
2-4 4 Cloud Network Security Design
2-4 5 Cloud Network Management and Monitoring
3 Enterprise Network Services Design
3-1 IP Addressing and Subnetting
3-1 1 IPv4 and IPv6 Addressing
3-1 2 Subnetting Techniques
3-1 3 IP Address Management (IPAM)
3-1 4 Addressing for Network Virtualization
3-2 Routing Protocols and Design
3-2 1 Interior Gateway Protocols (e g , OSPF, EIGRP)
3-2 2 Exterior Gateway Protocols (e g , BGP)
3-2 3 Routing Policy Design
3-2 4 Route Redistribution and Filtering
3-2 5 Routing for Network Virtualization
3-3 Switching and VLAN Design
3-3 1 Layer 2 Switching Protocols (e g , STP, VTP)
3-3 2 VLAN Design and Implementation
3-3 3 Trunking and Inter-VLAN Routing
3-3 4 Virtual Switching (e g , VSS, VPC)
3-3 5 Switching for Network Virtualization
3-4 Network Security Services Design
3-4 1 Firewall Design and Implementation
3-4 2 Intrusion Detection and Prevention Systems (IDSIPS)
3-4 3 Network Access Control (NAC)
3-4 4 VPN Design and Implementation
3-4 5 Secure Network Design Best Practices
3-5 Network Management and Monitoring Services Design
3-5 1 Network Management Protocols (e g , SNMP, NetFlow)
3-5 2 Network Monitoring Tools and Techniques
3-5 3 Network Performance Optimization
3-5 4 Network Troubleshooting and Diagnostics
3-5 5 Network Management for Virtualized Environments
4 Enterprise Network Implementation and Optimization
4-1 Network Implementation Planning
4-1 1 Implementation Project Management
4-1 2 Implementation Documentation
4-1 3 Implementation Best Practices
4-1 4 Implementation Testing and Validation
4-2 Network Optimization Techniques
4-2 1 Network Performance Tuning
4-2 2 Network Traffic Analysis and Optimization
4-2 3 Network Latency Reduction Techniques
4-2 4 Network Optimization for Virtualized Environments
4-3 Network Troubleshooting and Diagnostics
4-3 1 Troubleshooting Methodologies
4-3 2 Common Network Issues and Solutions
4-3 3 Network Diagnostics Tools and Techniques
4-3 4 Troubleshooting for Virtualized Networks
4-4 Network Compliance and Audit
4-4 1 Network Compliance Requirements
4-4 2 Network Audit Procedures
4-4 3 Network Compliance Best Practices
4-4 4 Network Compliance for Virtualized Environments
5 Enterprise Network Design Case Studies
5-1 Campus Network Design Case Study
5-1 1 Case Study Overview
5-1 2 Design Considerations
5-1 3 Implementation and Optimization
5-1 4 Lessons Learned
5-2 Data Center Network Design Case Study
5-2 1 Case Study Overview
5-2 2 Design Considerations
5-2 3 Implementation and Optimization
5-2 4 Lessons Learned
5-3 WAN Design Case Study
5-3 1 Case Study Overview
5-3 2 Design Considerations
5-3 3 Implementation and Optimization
5-3 4 Lessons Learned
5-4 Cloud and Hybrid Network Design Case Study
5-4 1 Case Study Overview
5-4 2 Design Considerations
5-4 3 Implementation and Optimization
5-4 4 Lessons Learned
3-2-3 Routing Policy Design

3-2-3 Routing Policy Design

Key Concepts

Routing Policies

Routing Policies are rules and configurations that determine how routers select and forward routes. They are essential for controlling traffic flow, optimizing network performance, and ensuring security. Routing policies can be applied to various routing protocols, such as OSPF, EIGRP, and BGP.

Example: A routing policy might dictate that traffic destined for a specific subnet should be routed through a particular path to optimize latency and avoid congested links.

Prefix Lists

Prefix Lists are used to filter routes based on IP address prefixes. They allow network administrators to define which routes should be allowed or denied based on their prefix length and specific IP ranges. Prefix lists are often used in conjunction with route maps to enforce routing policies.

Example: A prefix list might be configured to allow only routes with a prefix length of /24 or shorter, ensuring that more specific routes are not accepted into the routing table.

Route Maps

Route Maps are a powerful tool for applying complex routing policies. They consist of a series of match and set statements that allow administrators to filter routes based on various criteria and modify route attributes. Route maps are commonly used in BGP to control route advertisements and preferences.

Example: A route map might be used to match routes with a specific community value and set a higher local preference, ensuring that those routes are preferred over others in the routing table.

Community Lists

Community Lists are used to classify routes based on community attributes. Communities are tags that can be attached to BGP routes to indicate their origin or purpose. Community lists allow administrators to apply routing policies based on these tags, enabling more granular control over route selection and advertisement.

Example: A community list might be used to match routes with a community value indicating that they originate from a specific data center. These routes can then be prioritized or filtered based on the defined policy.

BGP (Border Gateway Protocol) Policies

BGP Policies are routing policies specifically applied to the BGP protocol. BGP is a path-vector routing protocol used to exchange routing information between autonomous systems (ASes) on the internet. BGP policies allow administrators to control how routes are advertised, received, and preferred within the network.

Example: A BGP policy might be configured to prefer routes that traverse a specific AS path, ensuring that traffic is routed through a preferred provider or avoiding certain ASes known for poor performance.

Examples and Analogies

Think of Routing Policies as traffic rules that guide how vehicles (data packets) move through a city (network). Prefix Lists are like street signs that indicate which roads (IP prefixes) are open or closed. Route Maps are like traffic lights that control the flow of vehicles based on specific conditions.

Community Lists are like vehicle stickers that indicate the origin or purpose of the vehicle, allowing traffic officers (routers) to apply specific rules based on these tags. BGP Policies are like international traffic agreements that determine how vehicles can travel between different countries (ASes).

By understanding these key concepts, network professionals can design and implement effective routing policies that optimize network performance, ensure security, and meet the needs of modern enterprises.