Cisco Certified Design Professional (CCDP) - Enterprise
1 Enterprise Architecture and Design Principles
1-1 Enterprise Network Design Concepts
1-1 1 Network Design Life Cycle
1-1 2 Design Considerations for Enterprise Networks
1-1 3 Network Segmentation and Micro-Segmentation
1-1 4 Network Security Design Principles
1-1 5 Network Scalability and Performance
1-1 6 Network Resilience and Redundancy
1-1 7 Network Automation and Programmability
1-1 8 Network Virtualization and SDN
1-1 9 Network Management and Monitoring
1-1 10 Compliance and Regulatory Requirements
1-2 Enterprise Network Design Models
1-2 1 Hierarchical Network Design Model
1-2 2 Spine-Leaf Architecture
1-2 3 Modular Network Design
1-2 4 Centralized vs Distributed Network Design
1-2 5 Hybrid Network Design Models
1-3 Enterprise Network Design Tools and Methodologies
1-3 1 Network Design Documentation
1-3 2 Network Design Software Tools
1-3 3 Network Design Methodologies (e g , TOGAF, Zachman)
1-3 4 Network Design Best Practices
2 Enterprise Network Infrastructure Design
2-1 Campus Network Design
2-1 1 Campus Network Topologies
2-1 2 Campus Network Access Layer Design
2-1 3 Campus Network Distribution Layer Design
2-1 4 Campus Network Core Layer Design
2-1 5 Campus Network Wireless Design
2-1 6 Campus Network Security Design
2-1 7 Campus Network Management and Monitoring
2-2 Data Center Network Design
2-2 1 Data Center Network Topologies
2-2 2 Data Center Network Fabric Design
2-2 3 Data Center Network Redundancy and Resilience
2-2 4 Data Center Network Security Design
2-2 5 Data Center Network Virtualization
2-2 6 Data Center Network Automation
2-2 7 Data Center Network Management and Monitoring
2-3 WAN Design
2-3 1 WAN Topologies
2-3 2 WAN Connectivity Options (e g , MPLS, VPN, Internet)
2-3 3 WAN Optimization Techniques
2-3 4 WAN Security Design
2-3 5 WAN Management and Monitoring
2-4 Cloud and Hybrid Network Design
2-4 1 Cloud Network Design Principles
2-4 2 Hybrid Network Design
2-4 3 Cloud Connectivity Options
2-4 4 Cloud Network Security Design
2-4 5 Cloud Network Management and Monitoring
3 Enterprise Network Services Design
3-1 IP Addressing and Subnetting
3-1 1 IPv4 and IPv6 Addressing
3-1 2 Subnetting Techniques
3-1 3 IP Address Management (IPAM)
3-1 4 Addressing for Network Virtualization
3-2 Routing Protocols and Design
3-2 1 Interior Gateway Protocols (e g , OSPF, EIGRP)
3-2 2 Exterior Gateway Protocols (e g , BGP)
3-2 3 Routing Policy Design
3-2 4 Route Redistribution and Filtering
3-2 5 Routing for Network Virtualization
3-3 Switching and VLAN Design
3-3 1 Layer 2 Switching Protocols (e g , STP, VTP)
3-3 2 VLAN Design and Implementation
3-3 3 Trunking and Inter-VLAN Routing
3-3 4 Virtual Switching (e g , VSS, VPC)
3-3 5 Switching for Network Virtualization
3-4 Network Security Services Design
3-4 1 Firewall Design and Implementation
3-4 2 Intrusion Detection and Prevention Systems (IDSIPS)
3-4 3 Network Access Control (NAC)
3-4 4 VPN Design and Implementation
3-4 5 Secure Network Design Best Practices
3-5 Network Management and Monitoring Services Design
3-5 1 Network Management Protocols (e g , SNMP, NetFlow)
3-5 2 Network Monitoring Tools and Techniques
3-5 3 Network Performance Optimization
3-5 4 Network Troubleshooting and Diagnostics
3-5 5 Network Management for Virtualized Environments
4 Enterprise Network Implementation and Optimization
4-1 Network Implementation Planning
4-1 1 Implementation Project Management
4-1 2 Implementation Documentation
4-1 3 Implementation Best Practices
4-1 4 Implementation Testing and Validation
4-2 Network Optimization Techniques
4-2 1 Network Performance Tuning
4-2 2 Network Traffic Analysis and Optimization
4-2 3 Network Latency Reduction Techniques
4-2 4 Network Optimization for Virtualized Environments
4-3 Network Troubleshooting and Diagnostics
4-3 1 Troubleshooting Methodologies
4-3 2 Common Network Issues and Solutions
4-3 3 Network Diagnostics Tools and Techniques
4-3 4 Troubleshooting for Virtualized Networks
4-4 Network Compliance and Audit
4-4 1 Network Compliance Requirements
4-4 2 Network Audit Procedures
4-4 3 Network Compliance Best Practices
4-4 4 Network Compliance for Virtualized Environments
5 Enterprise Network Design Case Studies
5-1 Campus Network Design Case Study
5-1 1 Case Study Overview
5-1 2 Design Considerations
5-1 3 Implementation and Optimization
5-1 4 Lessons Learned
5-2 Data Center Network Design Case Study
5-2 1 Case Study Overview
5-2 2 Design Considerations
5-2 3 Implementation and Optimization
5-2 4 Lessons Learned
5-3 WAN Design Case Study
5-3 1 Case Study Overview
5-3 2 Design Considerations
5-3 3 Implementation and Optimization
5-3 4 Lessons Learned
5-4 Cloud and Hybrid Network Design Case Study
5-4 1 Case Study Overview
5-4 2 Design Considerations
5-4 3 Implementation and Optimization
5-4 4 Lessons Learned
5-3-2 Design Considerations

5-3-2 Design Considerations

Key Concepts

Scalability

Scalability refers to the ability of a network to grow and support additional users, devices, and applications without compromising performance. A scalable network design ensures that the infrastructure can be expanded easily and cost-effectively as the organization grows.

Example: A company planning to expand its operations to multiple locations might design a network with a hierarchical topology that allows for easy addition of new sites. Using modular switches and routers that can be upgraded with additional modules as needed ensures scalability.

Redundancy

Redundancy involves designing the network with backup components and alternative paths to ensure continuous operation in the event of a failure. This minimizes downtime and ensures high availability of critical services.

Example: Implementing redundant links between network devices, such as using multiple ISPs for internet connectivity, ensures that if one link fails, traffic can be rerouted through the backup link without interruption.

Performance

Performance considerations focus on optimizing the network to deliver fast and reliable service. This includes selecting appropriate hardware, configuring QoS (Quality of Service), and managing traffic to avoid bottlenecks.

Example: A network designed for VoIP services might prioritize voice traffic over other types of traffic by implementing QoS policies. This ensures that voice calls are not disrupted by high volumes of data traffic.

Security

Security considerations involve protecting the network from unauthorized access, data breaches, and other threats. This includes implementing firewalls, encryption, access controls, and regular security audits.

Example: A financial institution might implement a multi-layered security approach, including firewalls, intrusion detection systems, and encryption for sensitive data. Regular security audits and vulnerability assessments help identify and mitigate potential risks.

Cost Efficiency

Cost Efficiency involves designing the network to meet performance and reliability requirements while minimizing expenses. This includes selecting cost-effective hardware, optimizing resource utilization, and avoiding over-provisioning.

Example: A company might choose to deploy a converged network that supports both data and voice traffic over a single infrastructure, reducing the need for separate networks and lowering overall costs.

Examples and Analogies

Think of Scalability as designing a house with room to add additional floors or wings as the family grows.

Redundancy is like having multiple exits in a building to ensure everyone can evacuate safely in case of an emergency.

Performance is akin to designing a highway with multiple lanes and traffic lights to ensure smooth and efficient traffic flow.

Security is like installing locks, alarms, and surveillance cameras to protect a house from intruders.

Cost Efficiency is designing a house with energy-efficient appliances and materials to reduce long-term expenses.