CompTIA Server+
1 Server Hardware
1-1 Server Types
1-1 1 Rack Servers
1-1 2 Tower Servers
1-1 3 Blade Servers
1-1 4 Micro Servers
1-1 5 Hyper-converged Infrastructure
1-1 6 Virtual Servers
1-2 Server Components
1-2 1 CPUs
1-2 2 Memory (RAM)
1-2 3 Storage Devices
1-2 4 Power Supply Units (PSUs)
1-2 5 Cooling Systems
1-2 6 Network Interface Cards (NICs)
1-2 7 Batteries and Uninterruptible Power Supplies (UPS)
1-2 8 Chassis and Enclosures
1-3 Server Form Factors
1-3 1 ATX
1-3 2 EATX
1-3 3 MicroATX
1-3 4 Mini-ITX
1-3 5-1U, 2U, 4U
1-4 Server Management
1-4 1 Remote Management Interfaces
1-4 2 Out-of-Band Management
1-4 3 In-Band Management
1-4 4 KVM (Keyboard, Video, Mouse) Switches
1-4 5 Serial Console
2 Server Virtualization
2-1 Virtualization Concepts
2-1 1 Hypervisors
2-1 2 Type 1 Hypervisors
2-1 3 Type 2 Hypervisors
2-1 4 Virtual Machines (VMs)
2-1 5 Virtual Disks
2-1 6 Virtual Networking
2-2 Virtualization Platforms
2-2 1 VMware vSphere
2-2 2 Microsoft Hyper-V
2-2 3 Citrix XenServer
2-2 4 KVM (Kernel-based Virtual Machine)
2-3 Virtual Machine Management
2-3 1 VM Creation
2-3 2 VM Configuration
2-3 3 VM Migration
2-3 4 VM Cloning
2-3 5 VM Snapshots
2-4 Resource Management
2-4 1 CPU Allocation
2-4 2 Memory Allocation
2-4 3 Storage Allocation
2-4 4 Network Allocation
3 Server Storage
3-1 Storage Technologies
3-1 1 Direct-Attached Storage (DAS)
3-1 2 Network-Attached Storage (NAS)
3-1 3 Storage Area Network (SAN)
3-1 4 Object Storage
3-1 5 Cloud Storage
3-2 Storage Protocols
3-2 1 SCSI (Small Computer System Interface)
3-2 2 SATA (Serial Advanced Technology Attachment)
3-2 3 SAS (Serial Attached SCSI)
3-2 4 iSCSI (Internet Small Computer System Interface)
3-2 5 Fibre Channel
3-2 6 NFS (Network File System)
3-2 7 SMBCIFS (Server Message BlockCommon Internet File System)
3-3 RAID (Redundant Array of Independent Disks)
3-3 1 RAID 0
3-3 2 RAID 1
3-3 3 RAID 5
3-3 4 RAID 6
3-3 5 RAID 10
3-3 6 RAID Levels Comparison
3-4 Storage Management
3-4 1 Disk Partitioning
3-4 2 File Systems
3-4 3 Volume Management
3-4 4 Backup and Recovery
3-4 5 Data Deduplication
4 Server Networking
4-1 Network Protocols
4-1 1 TCPIP
4-1 2 DNS (Domain Name System)
4-1 3 DHCP (Dynamic Host Configuration Protocol)
4-1 4 HTTPHTTPS
4-1 5 FTP (File Transfer Protocol)
4-1 6 SMTP (Simple Mail Transfer Protocol)
4-1 7 SNMP (Simple Network Management Protocol)
4-2 Network Configuration
4-2 1 IP Addressing
4-2 2 Subnetting
4-2 3 VLANs (Virtual Local Area Networks)
4-2 4 Routing
4-2 5 Firewall Configuration
4-3 Network Services
4-3 1 Web Servers
4-3 2 Mail Servers
4-3 3 File Servers
4-3 4 Print Servers
4-3 5 Database Servers
4-4 Network Security
4-4 1 Encryption
4-4 2 Authentication
4-4 3 Access Control
4-4 4 Intrusion Detection and Prevention
4-4 5 VPN (Virtual Private Network)
5 Server Maintenance and Troubleshooting
5-1 Hardware Maintenance
5-1 1 Component Replacement
5-1 2 Firmware Updates
5-1 3 Driver Updates
5-1 4 Regular Cleaning
5-2 Software Maintenance
5-2 1 Operating System Updates
5-2 2 Application Updates
5-2 3 Patch Management
5-2 4 Backup Procedures
5-3 Troubleshooting Techniques
5-3 1 Diagnostic Tools
5-3 2 Error Logs
5-3 3 System Monitoring
5-3 4 Performance Tuning
5-4 Disaster Recovery
5-4 1 Backup Strategies
5-4 2 Restore Procedures
5-4 3 Failover and Failback
5-4 4 Business Continuity Planning
6 Server Security
6-1 Security Concepts
6-1 1 Confidentiality
6-1 2 Integrity
6-1 3 Availability
6-2 Security Measures
6-2 1 Physical Security
6-2 2 Network Security
6-2 3 Data Encryption
6-2 4 User Authentication
6-2 5 Role-Based Access Control (RBAC)
6-3 Security Protocols
6-3 1 SSLTLS
6-3 2 SSH (Secure Shell)
6-3 3 IPSec
6-3 4 Kerberos
6-4 Security Best Practices
6-4 1 Regular Audits
6-4 2 Security Policies
6-4 3 Incident Response
6-4 4 Compliance
7 Server Administration
7-1 User Management
7-1 1 User Accounts
7-1 2 Group Management
7-1 3 Permissions and Access Rights
7-1 4 Password Policies
7-2 System Configuration
7-2 1 Time and Date Settings
7-2 2 Network Configuration
7-2 3 Resource Allocation
7-2 4 Service Management
7-3 Monitoring and Reporting
7-3 1 Performance Monitoring
7-3 2 Resource Utilization
7-3 3 Event Logs
7-3 4 Reporting Tools
7-4 Automation and Scripting
7-4 1 Task Automation
7-4 2 Scripting Languages
7-4 3 Configuration Management Tools
8 Server Compliance and Standards
8-1 Industry Standards
8-1 1 ISO Standards
8-1 2 ITIL (Information Technology Infrastructure Library)
8-1 3 COBIT (Control Objectives for Information and Related Technologies)
8-2 Regulatory Compliance
8-2 1 GDPR (General Data Protection Regulation)
8-2 2 HIPAA (Health Insurance Portability and Accountability Act)
8-2 3 PCI DSS (Payment Card Industry Data Security Standard)
8-3 Best Practices
8-3 1 Documentation
8-3 2 Change Management
8-3 3 Risk Management
8-3 4 Continuous Improvement
4-1 Network Protocols Explained

4-1 Network Protocols Explained

Key Concepts

Network Protocols

Network protocols are a set of rules and conventions that govern how data is transmitted over a network. They ensure that data is sent and received accurately and efficiently. Protocols define the format, timing, sequencing, and error control of data transmission.

TCP/IP

TCP/IP (Transmission Control Protocol/Internet Protocol) is the foundational protocol suite for the internet. TCP is responsible for ensuring reliable data transmission, while IP handles the addressing and routing of data packets. TCP/IP divides data into packets, assigns each packet an IP address, and ensures they are reassembled correctly at the destination.

HTTP/HTTPS

HTTP (Hypertext Transfer Protocol) is the protocol used for transferring web pages on the internet. It allows clients (web browsers) to request resources from servers, which then send the requested content. HTTPS (HTTP Secure) is a secure version of HTTP that encrypts data using SSL/TLS, ensuring that data is transmitted securely and privately.

FTP

FTP (File Transfer Protocol) is a standard network protocol used for transferring files between a client and a server on a computer network. FTP supports both text and binary file transfers and allows users to upload, download, and manage files on remote servers. It is commonly used for website maintenance and large file transfers.

DNS

DNS (Domain Name System) is a hierarchical and decentralized naming system used for translating human-readable domain names (like www.example.com) into IP addresses (like 192.0.2.1). DNS servers store and manage these mappings, allowing users to access websites using easy-to-remember names instead of numerical IP addresses.

Examples and Analogies

Think of TCP/IP as the postal service. Each letter (data packet) has an address (IP address) and is sent through various mail carriers (routers) to reach its destination. The postal service ensures that all letters are delivered correctly and in order.

HTTP/HTTPS can be compared to a secure letter delivery service. HTTP is like sending a regular letter, while HTTPS is like sending a letter in a locked box (encrypted data) to ensure privacy and security.

FTP is like a courier service that specializes in moving large packages (files) between different locations. It allows you to send and receive packages efficiently and manage them remotely.

DNS is like a phonebook for the internet. Instead of looking up a person's name to find their phone number, you look up a domain name to find its corresponding IP address, making it easier to access websites.