CompTIA Server+
1 Server Hardware
1-1 Server Types
1-1 1 Rack Servers
1-1 2 Tower Servers
1-1 3 Blade Servers
1-1 4 Micro Servers
1-1 5 Hyper-converged Infrastructure
1-1 6 Virtual Servers
1-2 Server Components
1-2 1 CPUs
1-2 2 Memory (RAM)
1-2 3 Storage Devices
1-2 4 Power Supply Units (PSUs)
1-2 5 Cooling Systems
1-2 6 Network Interface Cards (NICs)
1-2 7 Batteries and Uninterruptible Power Supplies (UPS)
1-2 8 Chassis and Enclosures
1-3 Server Form Factors
1-3 1 ATX
1-3 2 EATX
1-3 3 MicroATX
1-3 4 Mini-ITX
1-3 5-1U, 2U, 4U
1-4 Server Management
1-4 1 Remote Management Interfaces
1-4 2 Out-of-Band Management
1-4 3 In-Band Management
1-4 4 KVM (Keyboard, Video, Mouse) Switches
1-4 5 Serial Console
2 Server Virtualization
2-1 Virtualization Concepts
2-1 1 Hypervisors
2-1 2 Type 1 Hypervisors
2-1 3 Type 2 Hypervisors
2-1 4 Virtual Machines (VMs)
2-1 5 Virtual Disks
2-1 6 Virtual Networking
2-2 Virtualization Platforms
2-2 1 VMware vSphere
2-2 2 Microsoft Hyper-V
2-2 3 Citrix XenServer
2-2 4 KVM (Kernel-based Virtual Machine)
2-3 Virtual Machine Management
2-3 1 VM Creation
2-3 2 VM Configuration
2-3 3 VM Migration
2-3 4 VM Cloning
2-3 5 VM Snapshots
2-4 Resource Management
2-4 1 CPU Allocation
2-4 2 Memory Allocation
2-4 3 Storage Allocation
2-4 4 Network Allocation
3 Server Storage
3-1 Storage Technologies
3-1 1 Direct-Attached Storage (DAS)
3-1 2 Network-Attached Storage (NAS)
3-1 3 Storage Area Network (SAN)
3-1 4 Object Storage
3-1 5 Cloud Storage
3-2 Storage Protocols
3-2 1 SCSI (Small Computer System Interface)
3-2 2 SATA (Serial Advanced Technology Attachment)
3-2 3 SAS (Serial Attached SCSI)
3-2 4 iSCSI (Internet Small Computer System Interface)
3-2 5 Fibre Channel
3-2 6 NFS (Network File System)
3-2 7 SMBCIFS (Server Message BlockCommon Internet File System)
3-3 RAID (Redundant Array of Independent Disks)
3-3 1 RAID 0
3-3 2 RAID 1
3-3 3 RAID 5
3-3 4 RAID 6
3-3 5 RAID 10
3-3 6 RAID Levels Comparison
3-4 Storage Management
3-4 1 Disk Partitioning
3-4 2 File Systems
3-4 3 Volume Management
3-4 4 Backup and Recovery
3-4 5 Data Deduplication
4 Server Networking
4-1 Network Protocols
4-1 1 TCPIP
4-1 2 DNS (Domain Name System)
4-1 3 DHCP (Dynamic Host Configuration Protocol)
4-1 4 HTTPHTTPS
4-1 5 FTP (File Transfer Protocol)
4-1 6 SMTP (Simple Mail Transfer Protocol)
4-1 7 SNMP (Simple Network Management Protocol)
4-2 Network Configuration
4-2 1 IP Addressing
4-2 2 Subnetting
4-2 3 VLANs (Virtual Local Area Networks)
4-2 4 Routing
4-2 5 Firewall Configuration
4-3 Network Services
4-3 1 Web Servers
4-3 2 Mail Servers
4-3 3 File Servers
4-3 4 Print Servers
4-3 5 Database Servers
4-4 Network Security
4-4 1 Encryption
4-4 2 Authentication
4-4 3 Access Control
4-4 4 Intrusion Detection and Prevention
4-4 5 VPN (Virtual Private Network)
5 Server Maintenance and Troubleshooting
5-1 Hardware Maintenance
5-1 1 Component Replacement
5-1 2 Firmware Updates
5-1 3 Driver Updates
5-1 4 Regular Cleaning
5-2 Software Maintenance
5-2 1 Operating System Updates
5-2 2 Application Updates
5-2 3 Patch Management
5-2 4 Backup Procedures
5-3 Troubleshooting Techniques
5-3 1 Diagnostic Tools
5-3 2 Error Logs
5-3 3 System Monitoring
5-3 4 Performance Tuning
5-4 Disaster Recovery
5-4 1 Backup Strategies
5-4 2 Restore Procedures
5-4 3 Failover and Failback
5-4 4 Business Continuity Planning
6 Server Security
6-1 Security Concepts
6-1 1 Confidentiality
6-1 2 Integrity
6-1 3 Availability
6-2 Security Measures
6-2 1 Physical Security
6-2 2 Network Security
6-2 3 Data Encryption
6-2 4 User Authentication
6-2 5 Role-Based Access Control (RBAC)
6-3 Security Protocols
6-3 1 SSLTLS
6-3 2 SSH (Secure Shell)
6-3 3 IPSec
6-3 4 Kerberos
6-4 Security Best Practices
6-4 1 Regular Audits
6-4 2 Security Policies
6-4 3 Incident Response
6-4 4 Compliance
7 Server Administration
7-1 User Management
7-1 1 User Accounts
7-1 2 Group Management
7-1 3 Permissions and Access Rights
7-1 4 Password Policies
7-2 System Configuration
7-2 1 Time and Date Settings
7-2 2 Network Configuration
7-2 3 Resource Allocation
7-2 4 Service Management
7-3 Monitoring and Reporting
7-3 1 Performance Monitoring
7-3 2 Resource Utilization
7-3 3 Event Logs
7-3 4 Reporting Tools
7-4 Automation and Scripting
7-4 1 Task Automation
7-4 2 Scripting Languages
7-4 3 Configuration Management Tools
8 Server Compliance and Standards
8-1 Industry Standards
8-1 1 ISO Standards
8-1 2 ITIL (Information Technology Infrastructure Library)
8-1 3 COBIT (Control Objectives for Information and Related Technologies)
8-2 Regulatory Compliance
8-2 1 GDPR (General Data Protection Regulation)
8-2 2 HIPAA (Health Insurance Portability and Accountability Act)
8-2 3 PCI DSS (Payment Card Industry Data Security Standard)
8-3 Best Practices
8-3 1 Documentation
8-3 2 Change Management
8-3 3 Risk Management
8-3 4 Continuous Improvement
4-4 Network Security Explained

4-4 Network Security Explained

Key Concepts

Firewalls

A firewall is a network security device that monitors and controls incoming and outgoing network traffic based on predetermined security rules. It acts as a barrier between a trusted internal network and untrusted external networks, such as the internet. Firewalls can be hardware-based, software-based, or a combination of both.

Intrusion Detection Systems (IDS)

An Intrusion Detection System (IDS) is a device or software application that monitors network or system activities for malicious activities or policy violations. IDS can be network-based, which monitors traffic on the entire network, or host-based, which monitors the traffic on a specific host. IDS typically generates alerts when suspicious activity is detected.

Intrusion Prevention Systems (IPS)

An Intrusion Prevention System (IPS) is a network security tool that not only monitors network traffic for suspicious activity but also takes action to prevent potential threats. IPS can block or quarantine malicious traffic, update firewall rules, or shut down compromised systems. IPS is often integrated with IDS to provide a comprehensive security solution.

Virtual Private Networks (VPNs)

A Virtual Private Network (VPN) is a technology that creates a secure, encrypted connection over a less secure network, such as the internet. VPNs allow users to send and receive data as if their devices were directly connected to a private network. This is particularly useful for remote workers or organizations with multiple locations to ensure secure communication.

Encryption

Encryption is the process of converting data into a code to prevent unauthorized access. It ensures that data is unreadable to anyone who does not have the decryption key. Encryption is used in various network security applications, including secure communication protocols (e.g., SSL/TLS), disk encryption, and email encryption (e.g., PGP).

Examples and Analogies

Think of a firewall as a bouncer at a nightclub. The bouncer checks each person (packet) at the door (network interface) based on a set of rules (firewall rules). Only those who meet the criteria are allowed in, while others are turned away.

IDS can be compared to a security camera system in a store. The cameras monitor the store for suspicious activities (malicious traffic) and alert the security personnel (network administrator) when something unusual is detected.

IPS is like a security guard who not only monitors the store but also takes action to prevent theft (malicious activity). The guard can stop a suspicious person, call the police, or lock the store if necessary.

A VPN is like a secure tunnel that protects your data (packages) as they travel through a public network (busy street). The tunnel ensures that no one can intercept or read your data while it is in transit.

Encryption is like a secret code that only you and the recipient (decryption key holder) can understand. When you send a message (data), you encrypt it with a code, and only the recipient can decrypt it to read the message.