Python Training , study and exam guide
1 Introduction to Python
1.1 What is Python?
1.2 History of Python
1.3 Features of Python
1.4 Python Applications
1.5 Setting up the Python Environment
1.6 Running Your First Python Program
2 Python Basics
2.1 Python Syntax and Indentation
2.2 Variables and Data Types
2.2 1 Numbers
2.2 2 Strings
2.2 3 Lists
2.2 4 Tuples
2.2 5 Sets
2.2 6 Dictionaries
2.3 Operators
2.3 1 Arithmetic Operators
2.3 2 Comparison Operators
2.3 3 Logical Operators
2.3 4 Assignment Operators
2.3 5 Membership Operators
2.3 6 Identity Operators
2.4 Input and Output
2.4 1 Input Function
2.4 2 Output Function
2.5 Comments
2.5 1 Single-line Comments
2.5 2 Multi-line Comments
3 Control Flow
3.1 Conditional Statements
3.1 1 If Statement
3.1 2 If-Else Statement
3.1 3 Elif Statement
3.1 4 Nested If Statements
3.2 Loops
3.2 1 For Loop
3.2 2 While Loop
3.2 3 Nested Loops
3.3 Loop Control Statements
3.3 1 Break Statement
3.3 2 Continue Statement
3.3 3 Pass Statement
4 Functions
4.1 Defining Functions
4.2 Function Arguments
4.2 1 Positional Arguments
4.2 2 Keyword Arguments
4.2 3 Default Arguments
4.2 4 Variable-length Arguments
4.3 Return Statement
4.4 Lambda Functions
4.5 Scope of Variables
4.5 1 Local Variables
4.5 2 Global Variables
4.6 Recursion
5 Data Structures
5.1 Lists
5.1 1 List Operations
5.1 2 List Methods
5.1 3 List Comprehensions
5.2 Tuples
5.2 1 Tuple Operations
5.2 2 Tuple Methods
5.3 Sets
5.3 1 Set Operations
5.3 2 Set Methods
5.4 Dictionaries
5.4 1 Dictionary Operations
5.4 2 Dictionary Methods
5.5 Advanced Data Structures
5.5 1 Stacks
5.5 2 Queues
5.5 3 Linked Lists
6 Modules and Packages
6.1 Importing Modules
6.2 Creating Modules
6.3 Standard Library Modules
6.3 1 Math Module
6.3 2 Random Module
6.3 3 DateTime Module
6.4 Creating Packages
6.5 Installing External Packages
7 File Handling
7.1 Opening and Closing Files
7.2 Reading from Files
7.2 1 read()
7.2 2 readline()
7.2 3 readlines()
7.3 Writing to Files
7.3 1 write()
7.3 2 writelines()
7.4 File Modes
7.5 Working with CSV Files
7.6 Working with JSON Files
8 Exception Handling
8.1 Try and Except Blocks
8.2 Handling Multiple Exceptions
8.3 Finally Block
8.4 Raising Exceptions
8.5 Custom Exceptions
9 Object-Oriented Programming (OOP)
9.1 Classes and Objects
9.2 Attributes and Methods
9.3 Constructors and Destructors
9.4 Inheritance
9.4 1 Single Inheritance
9.4 2 Multiple Inheritance
9.4 3 Multilevel Inheritance
9.5 Polymorphism
9.6 Encapsulation
9.7 Abstraction
10 Working with Libraries
10.1 NumPy
10.1 1 Introduction to NumPy
10.1 2 Creating NumPy Arrays
10.1 3 Array Operations
10.2 Pandas
10.2 1 Introduction to Pandas
10.2 2 DataFrames and Series
10.2 3 Data Manipulation
10.3 Matplotlib
10.3 1 Introduction to Matplotlib
10.3 2 Plotting Graphs
10.3 3 Customizing Plots
10.4 Scikit-learn
10.4 1 Introduction to Scikit-learn
10.4 2 Machine Learning Basics
10.4 3 Model Training and Evaluation
11 Web Development with Python
11.1 Introduction to Web Development
11.2 Flask Framework
11.2 1 Setting Up Flask
11.2 2 Routing
11.2 3 Templates
11.2 4 Forms and Validation
11.3 Django Framework
11.3 1 Setting Up Django
11.3 2 Models and Databases
11.3 3 Views and Templates
11.3 4 Forms and Authentication
12 Final Exam Preparation
12.1 Review of Key Concepts
12.2 Practice Questions
12.3 Mock Exams
12.4 Exam Tips and Strategies
10 3 3 Customizing Plots Explained

10 3 3 Customizing Plots Explained

Key Concepts

Customizing plots in Python involves several key concepts:

1. Title and Labels

Titles and labels are essential for making plots understandable. You can add a title to the plot and labels to the x and y axes.

Example:

import matplotlib.pyplot as plt

x = [1, 2, 3, 4, 5]
y = [2, 4, 6, 8, 10]

plt.plot(x, y)
plt.title('Simple Line Plot')
plt.xlabel('X-axis Label')
plt.ylabel('Y-axis Label')
plt.show()
    

Analogy: Think of titles and labels as the headings and captions in a book, helping readers understand the content.

2. Colors and Styles

Customizing colors and styles can make your plots more visually appealing. You can change the color of lines, markers, and backgrounds.

Example:

import matplotlib.pyplot as plt

x = [1, 2, 3, 4, 5]
y = [2, 4, 6, 8, 10]

plt.plot(x, y, color='red', linestyle='--', marker='o')
plt.title('Customized Line Plot')
plt.xlabel('X-axis Label')
plt.ylabel('Y-axis Label')
plt.show()
    

Analogy: Think of colors and styles as the design elements in a painting, making it more attractive and engaging.

3. Legends

Legends help in identifying different datasets in a plot. You can add a legend to your plot to differentiate between multiple lines or markers.

Example:

import matplotlib.pyplot as plt

x = [1, 2, 3, 4, 5]
y1 = [2, 4, 6, 8, 10]
y2 = [1, 3, 5, 7, 9]

plt.plot(x, y1, label='Line 1')
plt.plot(x, y2, label='Line 2')
plt.legend()
plt.title('Plot with Legend')
plt.xlabel('X-axis Label')
plt.ylabel('Y-axis Label')
plt.show()
    

Analogy: Think of legends as the key in a treasure map, helping you identify different paths or elements.

4. Gridlines

Gridlines make it easier to read values from a plot. You can add major and minor gridlines to your plot.

Example:

import matplotlib.pyplot as plt

x = [1, 2, 3, 4, 5]
y = [2, 4, 6, 8, 10]

plt.plot(x, y)
plt.grid(True, which='both')
plt.title('Plot with Gridlines')
plt.xlabel('X-axis Label')
plt.ylabel('Y-axis Label')
plt.show()
    

Analogy: Think of gridlines as the lines on a graph paper, helping you align and read values more accurately.

5. Annotations

Annotations allow you to add text or arrows to specific points on a plot. This is useful for highlighting important data points.

Example:

import matplotlib.pyplot as plt

x = [1, 2, 3, 4, 5]
y = [2, 4, 6, 8, 10]

plt.plot(x, y)
plt.annotate('Important Point', xy=(3, 6), xytext=(4, 7),
             arrowprops=dict(facecolor='black', shrink=0.05))
plt.title('Plot with Annotation')
plt.xlabel('X-axis Label')
plt.ylabel('Y-axis Label')
plt.show()
    

Analogy: Think of annotations as sticky notes on a chart, pointing out specific details or insights.

6. Subplots

Subplots allow you to create multiple plots in a single figure. This is useful for comparing different datasets or visualizations.

Example:

import matplotlib.pyplot as plt

x = [1, 2, 3, 4, 5]
y1 = [2, 4, 6, 8, 10]
y2 = [1, 3, 5, 7, 9]

fig, axs = plt.subplots(2)
axs[0].plot(x, y1)
axs[0].set_title('Subplot 1')
axs[1].plot(x, y2)
axs[1].set_title('Subplot 2')
plt.show()
    

Analogy: Think of subplots as multiple panels in a comic strip, each telling a different part of the story.

Putting It All Together

By understanding and using these concepts effectively, you can create customized and informative plots in Python.

Example:

import matplotlib.pyplot as plt

x = [1, 2, 3, 4, 5]
y1 = [2, 4, 6, 8, 10]
y2 = [1, 3, 5, 7, 9]

fig, axs = plt.subplots(2)
axs[0].plot(x, y1, color='blue', label='Line 1')
axs[0].set_title('Subplot 1')
axs[0].set_xlabel('X-axis Label')
axs[0].set_ylabel('Y-axis Label')
axs[0].grid(True)
axs[0].legend()
axs[0].annotate('Important Point', xy=(3, 6), xytext=(4, 7),
                arrowprops=dict(facecolor='black', shrink=0.05))

axs[1].plot(x, y2, color='red', label='Line 2')
axs[1].set_title('Subplot 2')
axs[1].set_xlabel('X-axis Label')
axs[1].set_ylabel('Y-axis Label')
axs[1].grid(True)
axs[1].legend()

plt.show()