Python Training , study and exam guide
1 Introduction to Python
1.1 What is Python?
1.2 History of Python
1.3 Features of Python
1.4 Python Applications
1.5 Setting up the Python Environment
1.6 Running Your First Python Program
2 Python Basics
2.1 Python Syntax and Indentation
2.2 Variables and Data Types
2.2 1 Numbers
2.2 2 Strings
2.2 3 Lists
2.2 4 Tuples
2.2 5 Sets
2.2 6 Dictionaries
2.3 Operators
2.3 1 Arithmetic Operators
2.3 2 Comparison Operators
2.3 3 Logical Operators
2.3 4 Assignment Operators
2.3 5 Membership Operators
2.3 6 Identity Operators
2.4 Input and Output
2.4 1 Input Function
2.4 2 Output Function
2.5 Comments
2.5 1 Single-line Comments
2.5 2 Multi-line Comments
3 Control Flow
3.1 Conditional Statements
3.1 1 If Statement
3.1 2 If-Else Statement
3.1 3 Elif Statement
3.1 4 Nested If Statements
3.2 Loops
3.2 1 For Loop
3.2 2 While Loop
3.2 3 Nested Loops
3.3 Loop Control Statements
3.3 1 Break Statement
3.3 2 Continue Statement
3.3 3 Pass Statement
4 Functions
4.1 Defining Functions
4.2 Function Arguments
4.2 1 Positional Arguments
4.2 2 Keyword Arguments
4.2 3 Default Arguments
4.2 4 Variable-length Arguments
4.3 Return Statement
4.4 Lambda Functions
4.5 Scope of Variables
4.5 1 Local Variables
4.5 2 Global Variables
4.6 Recursion
5 Data Structures
5.1 Lists
5.1 1 List Operations
5.1 2 List Methods
5.1 3 List Comprehensions
5.2 Tuples
5.2 1 Tuple Operations
5.2 2 Tuple Methods
5.3 Sets
5.3 1 Set Operations
5.3 2 Set Methods
5.4 Dictionaries
5.4 1 Dictionary Operations
5.4 2 Dictionary Methods
5.5 Advanced Data Structures
5.5 1 Stacks
5.5 2 Queues
5.5 3 Linked Lists
6 Modules and Packages
6.1 Importing Modules
6.2 Creating Modules
6.3 Standard Library Modules
6.3 1 Math Module
6.3 2 Random Module
6.3 3 DateTime Module
6.4 Creating Packages
6.5 Installing External Packages
7 File Handling
7.1 Opening and Closing Files
7.2 Reading from Files
7.2 1 read()
7.2 2 readline()
7.2 3 readlines()
7.3 Writing to Files
7.3 1 write()
7.3 2 writelines()
7.4 File Modes
7.5 Working with CSV Files
7.6 Working with JSON Files
8 Exception Handling
8.1 Try and Except Blocks
8.2 Handling Multiple Exceptions
8.3 Finally Block
8.4 Raising Exceptions
8.5 Custom Exceptions
9 Object-Oriented Programming (OOP)
9.1 Classes and Objects
9.2 Attributes and Methods
9.3 Constructors and Destructors
9.4 Inheritance
9.4 1 Single Inheritance
9.4 2 Multiple Inheritance
9.4 3 Multilevel Inheritance
9.5 Polymorphism
9.6 Encapsulation
9.7 Abstraction
10 Working with Libraries
10.1 NumPy
10.1 1 Introduction to NumPy
10.1 2 Creating NumPy Arrays
10.1 3 Array Operations
10.2 Pandas
10.2 1 Introduction to Pandas
10.2 2 DataFrames and Series
10.2 3 Data Manipulation
10.3 Matplotlib
10.3 1 Introduction to Matplotlib
10.3 2 Plotting Graphs
10.3 3 Customizing Plots
10.4 Scikit-learn
10.4 1 Introduction to Scikit-learn
10.4 2 Machine Learning Basics
10.4 3 Model Training and Evaluation
11 Web Development with Python
11.1 Introduction to Web Development
11.2 Flask Framework
11.2 1 Setting Up Flask
11.2 2 Routing
11.2 3 Templates
11.2 4 Forms and Validation
11.3 Django Framework
11.3 1 Setting Up Django
11.3 2 Models and Databases
11.3 3 Views and Templates
11.3 4 Forms and Authentication
12 Final Exam Preparation
12.1 Review of Key Concepts
12.2 Practice Questions
12.3 Mock Exams
12.4 Exam Tips and Strategies
4 4 Lambda Functions Explained

4 4 Lambda Functions Explained

Key Concepts

Lambda functions in Python are small, anonymous functions defined with the lambda keyword. They are useful for creating simple, one-line functions. The key concepts include:

1. Definition and Syntax

A lambda function is defined using the lambda keyword followed by a list of parameters, a colon, and an expression. The syntax is:

lambda parameters: expression
    

Example:

add = lambda x, y: x + y
print(add(3, 5))  # Output: 8
    

2. Usage in Expressions

Lambda functions are often used in situations where a small function is needed for a short period. They can be used directly in expressions without being assigned to a variable.

Example:

print((lambda x, y: x * y)(4, 6))  # Output: 24
    

3. Comparison with Regular Functions

Lambda functions are similar to regular functions but are more concise and can only contain a single expression. Regular functions are defined using the def keyword and can contain multiple statements.

Example of a regular function:

def multiply(x, y):
    return x * y

print(multiply(4, 6))  # Output: 24
    

Example of a lambda function:

multiply = lambda x, y: x * y
print(multiply(4, 6))  # Output: 24
    

4. Practical Applications

Lambda functions are commonly used with higher-order functions like map(), filter(), and sorted(). They provide a concise way to apply functions to iterables.

Example with map():

numbers = [1, 2, 3, 4, 5]
squared = map(lambda x: x ** 2, numbers)
print(list(squared))  # Output: [1, 4, 9, 16, 25]
    

Example with filter():

numbers = [1, 2, 3, 4, 5]
evens = filter(lambda x: x % 2 == 0, numbers)
print(list(evens))  # Output: [2, 4]
    

Example with sorted():

students = [("Alice", 22), ("Bob", 19), ("Charlie", 25)]
sorted_students = sorted(students, key=lambda student: student[1])
print(sorted_students)  # Output: [('Bob', 19), ('Alice', 22), ('Charlie', 25)]
    

Putting It All Together

By understanding and using lambda functions effectively, you can create concise and powerful code in Python. They are particularly useful in functional programming and when working with higher-order functions.

Example:

numbers = [1, 2, 3, 4, 5]
result = map(lambda x: x * 2, filter(lambda x: x % 2 == 0, numbers))
print(list(result))  # Output: [4, 8]