Python Training , study and exam guide
1 Introduction to Python
1.1 What is Python?
1.2 History of Python
1.3 Features of Python
1.4 Python Applications
1.5 Setting up the Python Environment
1.6 Running Your First Python Program
2 Python Basics
2.1 Python Syntax and Indentation
2.2 Variables and Data Types
2.2 1 Numbers
2.2 2 Strings
2.2 3 Lists
2.2 4 Tuples
2.2 5 Sets
2.2 6 Dictionaries
2.3 Operators
2.3 1 Arithmetic Operators
2.3 2 Comparison Operators
2.3 3 Logical Operators
2.3 4 Assignment Operators
2.3 5 Membership Operators
2.3 6 Identity Operators
2.4 Input and Output
2.4 1 Input Function
2.4 2 Output Function
2.5 Comments
2.5 1 Single-line Comments
2.5 2 Multi-line Comments
3 Control Flow
3.1 Conditional Statements
3.1 1 If Statement
3.1 2 If-Else Statement
3.1 3 Elif Statement
3.1 4 Nested If Statements
3.2 Loops
3.2 1 For Loop
3.2 2 While Loop
3.2 3 Nested Loops
3.3 Loop Control Statements
3.3 1 Break Statement
3.3 2 Continue Statement
3.3 3 Pass Statement
4 Functions
4.1 Defining Functions
4.2 Function Arguments
4.2 1 Positional Arguments
4.2 2 Keyword Arguments
4.2 3 Default Arguments
4.2 4 Variable-length Arguments
4.3 Return Statement
4.4 Lambda Functions
4.5 Scope of Variables
4.5 1 Local Variables
4.5 2 Global Variables
4.6 Recursion
5 Data Structures
5.1 Lists
5.1 1 List Operations
5.1 2 List Methods
5.1 3 List Comprehensions
5.2 Tuples
5.2 1 Tuple Operations
5.2 2 Tuple Methods
5.3 Sets
5.3 1 Set Operations
5.3 2 Set Methods
5.4 Dictionaries
5.4 1 Dictionary Operations
5.4 2 Dictionary Methods
5.5 Advanced Data Structures
5.5 1 Stacks
5.5 2 Queues
5.5 3 Linked Lists
6 Modules and Packages
6.1 Importing Modules
6.2 Creating Modules
6.3 Standard Library Modules
6.3 1 Math Module
6.3 2 Random Module
6.3 3 DateTime Module
6.4 Creating Packages
6.5 Installing External Packages
7 File Handling
7.1 Opening and Closing Files
7.2 Reading from Files
7.2 1 read()
7.2 2 readline()
7.2 3 readlines()
7.3 Writing to Files
7.3 1 write()
7.3 2 writelines()
7.4 File Modes
7.5 Working with CSV Files
7.6 Working with JSON Files
8 Exception Handling
8.1 Try and Except Blocks
8.2 Handling Multiple Exceptions
8.3 Finally Block
8.4 Raising Exceptions
8.5 Custom Exceptions
9 Object-Oriented Programming (OOP)
9.1 Classes and Objects
9.2 Attributes and Methods
9.3 Constructors and Destructors
9.4 Inheritance
9.4 1 Single Inheritance
9.4 2 Multiple Inheritance
9.4 3 Multilevel Inheritance
9.5 Polymorphism
9.6 Encapsulation
9.7 Abstraction
10 Working with Libraries
10.1 NumPy
10.1 1 Introduction to NumPy
10.1 2 Creating NumPy Arrays
10.1 3 Array Operations
10.2 Pandas
10.2 1 Introduction to Pandas
10.2 2 DataFrames and Series
10.2 3 Data Manipulation
10.3 Matplotlib
10.3 1 Introduction to Matplotlib
10.3 2 Plotting Graphs
10.3 3 Customizing Plots
10.4 Scikit-learn
10.4 1 Introduction to Scikit-learn
10.4 2 Machine Learning Basics
10.4 3 Model Training and Evaluation
11 Web Development with Python
11.1 Introduction to Web Development
11.2 Flask Framework
11.2 1 Setting Up Flask
11.2 2 Routing
11.2 3 Templates
11.2 4 Forms and Validation
11.3 Django Framework
11.3 1 Setting Up Django
11.3 2 Models and Databases
11.3 3 Views and Templates
11.3 4 Forms and Authentication
12 Final Exam Preparation
12.1 Review of Key Concepts
12.2 Practice Questions
12.3 Mock Exams
12.4 Exam Tips and Strategies
5 1 Lists Explained

5 1 Lists Explained

Key Concepts

Lists in Python are versatile data structures that allow you to store multiple items in a single variable. The key concepts include:

1. Creating Lists

Lists are created using square brackets [] and can contain any type of data, including numbers, strings, and even other lists.

Example:

fruits = ["apple", "banana", "cherry"]
numbers = [1, 2, 3, 4, 5]
mixed = ["apple", 1, "banana", 2]
    

2. Accessing Elements

Elements in a list are accessed using their index, which starts at 0 for the first element. Negative indices can be used to access elements from the end of the list.

Example:

fruits = ["apple", "banana", "cherry"]
print(fruits[0])  # Output: apple
print(fruits[-1])  # Output: cherry
    

3. Modifying Lists

Lists are mutable, meaning you can change their content. You can add, remove, or update elements in a list.

Example:

fruits = ["apple", "banana", "cherry"]
fruits[1] = "blueberry"
print(fruits)  # Output: ['apple', 'blueberry', 'cherry']

fruits.append("orange")
print(fruits)  # Output: ['apple', 'blueberry', 'cherry', 'orange']

fruits.remove("apple")
print(fruits)  # Output: ['blueberry', 'cherry', 'orange']
    

4. List Methods

Python provides several built-in methods to manipulate lists. Some common methods include append(), remove(), sort(), and reverse().

Example:

numbers = [3, 1, 4, 1, 5, 9]
numbers.sort()
print(numbers)  # Output: [1, 1, 3, 4, 5, 9]

numbers.reverse()
print(numbers)  # Output: [9, 5, 4, 3, 1, 1]
    

5. List Comprehensions

List comprehensions provide a concise way to create lists. They are often used to apply an expression to each item in an existing list.

Example:

squares = [x**2 for x in range(10)]
print(squares)  # Output: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

even_squares = [x**2 for x in range(10) if x % 2 == 0]
print(even_squares)  # Output: [0, 4, 16, 36, 64]
    

Putting It All Together

By understanding and using lists effectively, you can store and manipulate collections of data in Python. Lists are a fundamental data structure that you will use frequently in your programming journey.

Example:

fruits = ["apple", "banana", "cherry"]
fruits.append("orange")
fruits.remove("banana")
fruits.sort()
print(fruits)  # Output: ['apple', 'cherry', 'orange']

squares = [x**2 for x in range(10) if x % 2 == 0]
print(squares)  # Output: [0, 4, 16, 36, 64]