Cisco Certified Network Associate (CCNA)
1 Network Fundamentals
1-1 Explain the role and function of network components
1-2 Describe characteristics of network topology architectures
1-3 Compare physical interface and cabling types
1-4 Identify interface and cable issues (collisions, errors, mismatch protocols)
1-5 Compare TCP to UDP
1-6 Configure and verify IPv4 addressing and subnetting
1-7 Describe the need for private IPv4 addressing
1-8 Configure and verify IPv6 addressing and prefix
1-9 Compare IPv6 address types
1-10 Describe IPv6 address autoconfiguration
1-11 Verify IP parameters for Client OS (Windows, Linux, Mac OS)
1-12 Describe wireless principles (SSID, BSS, ESS)
1-13 Describe virtualization fundamentals (hypervisor)
1-14 Describe switching concepts
2 Network Access
2-1 Configure and verify VLANs (normal range) spanning multiple switches
2-2 Configure and verify interswitch connectivity (trunking, DTP, VTP)
2-3 Configure and verify Layer 2 discovery protocols (CDP, LLDP)
2-4 Configure and verify (Layer 2Layer 3) EtherChannel (LACP)
2-5 Describe the need for and basic operations of Rapid PVST+ Spanning Tree Protocol
2-6 Compare Cisco Wireless Architectures and AP modes
2-7 Describe physical infrastructure connections of WLAN components (AP, WLC, accesstrunk ports, and LAG)
2-8 Describe AP and WLC management access connections (Telnet, SSH, HTTP, HTTPS, console, and TACACS+RADIUS)
2-9 Configure the components of a wireless LAN access for client connectivity using GUI only
3 IP Connectivity
3-1 Interpret the components of routing table
3-2 Determine how a router makes a forwarding decision by default
3-3 Configure and verify IPv4 and IPv6 static routing
3-4 Configure and verify single area OSPF
3-5 Describe the purpose of first hop redundancy protocols
4 IP Services
4-1 Configure and verify inside source NAT using static and pools
4-2 Configure and verify NTP operating in a client and server mode
4-3 Explain the role of DHCP and DNS within the network
4-4 Explain the function of SNMP in network operations
4-5 Describe the use of syslog features including facilities and levels
4-6 Configure and verify DHCP client and relay
4-7 Explain the forwarding per-hop behavior (PHB) for QoS such as classification, marking, queuing, and congestion
4-8 Configure network devices for remote access using SSH
4-9 Describe the capabilities and function of TFTPFTP in the network
5 Security Fundamentals
5-1 Define key security concepts (threats, vulnerabilities, exploits, and mitigation techniques)
5-2 Describe security program elements (user awareness, training, and physical access control)
5-3 Configure and verify device access control using local passwords
5-4 Describe security password policies elements, such as management, complexity, and password alternatives (multifactor authentication, certificates, and biometrics)
5-5 Configure and verify access control lists (ACLs)
5-6 Configure and verify Layer 2 security features (DHCP snooping, dynamic ARP inspection, and port security)
5-7 Configure and verify IPv6 access control lists (ACLs)
5-8 Describe wireless security protocols (WPA, WPA2, and WPA3)
5-9 Configure and verify wireless security settings
5-10 Describe the components of a comprehensive security policy (acceptable use policy, password, updates, and patches)
6 Automation and Programmability
6-1 Explain how automation impacts network management
6-2 Compare traditional networks with controller-based networking
6-3 Describe controller-based and software defined architectures (overlay, underlay, and fabric)
6-4 Compare traditional campus device management with Cisco DNA Center enabled device management
6-5 Describe characteristics of REST-based APIs (CRUD, HTTP verbs, and data encoding)
6-6 Recognize the capabilities of configuration management mechanisms Puppet, Chef, and Ansible
6-7 Interpret JSON encoded data
6-8 Identify the appropriate Automation and Programmability solution for a given scenario
IPv6 Address Autoconfiguration

IPv6 Address Autoconfiguration

IPv6 address autoconfiguration is a feature that allows devices to automatically configure their own IPv6 addresses without needing a DHCP server. This process is known as Stateless Address Autoconfiguration (SLAAC).

Key Concepts

Detailed Explanation

SLAAC (Stateless Address Autoconfiguration)

SLAAC is a mechanism that enables devices to automatically configure their IPv6 addresses. When a device connects to a network, it sends a Router Solicitation (RS) message to request information from the router. The router responds with a Router Advertisement (RA) message containing the network prefix and other configuration details.

Router Advertisement (RA)

The Router Advertisement (RA) message is a critical component of SLAAC. It includes the following information:

Link-Local Address

A Link-Local Address is an IPv6 address that is automatically configured for every interface on a device. It is used for communication within the same link (e.g., a local network segment). The Link-Local Address is formed by combining the prefix "fe80::/10" with the interface identifier, which is derived from the device's MAC address.

Global Unicast Address

A Global Unicast Address is an IPv6 address that is globally unique and routable on the Internet. It is formed by combining the network prefix received in the Router Advertisement with the interface identifier. This address allows the device to communicate with other devices on the Internet.

Examples and Analogies

Consider a new employee joining a company. The employee needs an office and a phone number to start working. In the IPv6 world:

By understanding these concepts, you can appreciate how IPv6 address autoconfiguration simplifies network management and enables seamless connectivity for devices.