Cisco Certified Network Associate (CCNA)
1 Network Fundamentals
1-1 Explain the role and function of network components
1-2 Describe characteristics of network topology architectures
1-3 Compare physical interface and cabling types
1-4 Identify interface and cable issues (collisions, errors, mismatch protocols)
1-5 Compare TCP to UDP
1-6 Configure and verify IPv4 addressing and subnetting
1-7 Describe the need for private IPv4 addressing
1-8 Configure and verify IPv6 addressing and prefix
1-9 Compare IPv6 address types
1-10 Describe IPv6 address autoconfiguration
1-11 Verify IP parameters for Client OS (Windows, Linux, Mac OS)
1-12 Describe wireless principles (SSID, BSS, ESS)
1-13 Describe virtualization fundamentals (hypervisor)
1-14 Describe switching concepts
2 Network Access
2-1 Configure and verify VLANs (normal range) spanning multiple switches
2-2 Configure and verify interswitch connectivity (trunking, DTP, VTP)
2-3 Configure and verify Layer 2 discovery protocols (CDP, LLDP)
2-4 Configure and verify (Layer 2Layer 3) EtherChannel (LACP)
2-5 Describe the need for and basic operations of Rapid PVST+ Spanning Tree Protocol
2-6 Compare Cisco Wireless Architectures and AP modes
2-7 Describe physical infrastructure connections of WLAN components (AP, WLC, accesstrunk ports, and LAG)
2-8 Describe AP and WLC management access connections (Telnet, SSH, HTTP, HTTPS, console, and TACACS+RADIUS)
2-9 Configure the components of a wireless LAN access for client connectivity using GUI only
3 IP Connectivity
3-1 Interpret the components of routing table
3-2 Determine how a router makes a forwarding decision by default
3-3 Configure and verify IPv4 and IPv6 static routing
3-4 Configure and verify single area OSPF
3-5 Describe the purpose of first hop redundancy protocols
4 IP Services
4-1 Configure and verify inside source NAT using static and pools
4-2 Configure and verify NTP operating in a client and server mode
4-3 Explain the role of DHCP and DNS within the network
4-4 Explain the function of SNMP in network operations
4-5 Describe the use of syslog features including facilities and levels
4-6 Configure and verify DHCP client and relay
4-7 Explain the forwarding per-hop behavior (PHB) for QoS such as classification, marking, queuing, and congestion
4-8 Configure network devices for remote access using SSH
4-9 Describe the capabilities and function of TFTPFTP in the network
5 Security Fundamentals
5-1 Define key security concepts (threats, vulnerabilities, exploits, and mitigation techniques)
5-2 Describe security program elements (user awareness, training, and physical access control)
5-3 Configure and verify device access control using local passwords
5-4 Describe security password policies elements, such as management, complexity, and password alternatives (multifactor authentication, certificates, and biometrics)
5-5 Configure and verify access control lists (ACLs)
5-6 Configure and verify Layer 2 security features (DHCP snooping, dynamic ARP inspection, and port security)
5-7 Configure and verify IPv6 access control lists (ACLs)
5-8 Describe wireless security protocols (WPA, WPA2, and WPA3)
5-9 Configure and verify wireless security settings
5-10 Describe the components of a comprehensive security policy (acceptable use policy, password, updates, and patches)
6 Automation and Programmability
6-1 Explain how automation impacts network management
6-2 Compare traditional networks with controller-based networking
6-3 Describe controller-based and software defined architectures (overlay, underlay, and fabric)
6-4 Compare traditional campus device management with Cisco DNA Center enabled device management
6-5 Describe characteristics of REST-based APIs (CRUD, HTTP verbs, and data encoding)
6-6 Recognize the capabilities of configuration management mechanisms Puppet, Chef, and Ansible
6-7 Interpret JSON encoded data
6-8 Identify the appropriate Automation and Programmability solution for a given scenario
CCNA: 3 IP Connectivity

CCNA: 3 IP Connectivity

Key Concepts

IP Addressing

IP Addressing is the process of assigning unique identifiers to devices on a network. These identifiers, known as IP addresses, allow devices to communicate with each other over the internet or a local network. IP addresses are typically represented in dotted-decimal notation, such as 192.168.1.1.

Example: Think of an IP address as a mailing address for a house. Just as a mailing address ensures that letters reach the correct house, an IP address ensures that data packets reach the correct device on a network.

Subnetting

Subnetting is the process of dividing a larger network into smaller, more manageable subnetworks, or subnets. This is achieved by borrowing bits from the host portion of an IP address to create additional network segments. Subnetting improves network efficiency and security by reducing broadcast traffic and isolating network issues.

Example: Imagine a large office building with multiple departments. By subnetting, you can create separate network segments for each department, similar to creating separate floors or wings in the building. This allows each department to have its own private network, reducing congestion and enhancing security.

Routing

Routing is the process of forwarding data packets between different networks. Routers use routing tables to determine the best path for data packets to reach their destination. Routing enables communication between devices on different networks, such as connecting a home network to the internet.

Example: Consider a routing process as a navigation system that guides a car from one city to another. The navigation system (router) uses a map (routing table) to find the best route (path) for the car (data packet) to reach its destination city (network).

Conclusion

Understanding IP addressing, subnetting, and routing is fundamental for effective network design and management. These concepts enable devices to communicate across networks, ensure efficient use of network resources, and provide the foundation for scalable and secure network architectures.