Cisco Certified Network Associate (CCNA)
1 Network Fundamentals
1-1 Explain the role and function of network components
1-2 Describe characteristics of network topology architectures
1-3 Compare physical interface and cabling types
1-4 Identify interface and cable issues (collisions, errors, mismatch protocols)
1-5 Compare TCP to UDP
1-6 Configure and verify IPv4 addressing and subnetting
1-7 Describe the need for private IPv4 addressing
1-8 Configure and verify IPv6 addressing and prefix
1-9 Compare IPv6 address types
1-10 Describe IPv6 address autoconfiguration
1-11 Verify IP parameters for Client OS (Windows, Linux, Mac OS)
1-12 Describe wireless principles (SSID, BSS, ESS)
1-13 Describe virtualization fundamentals (hypervisor)
1-14 Describe switching concepts
2 Network Access
2-1 Configure and verify VLANs (normal range) spanning multiple switches
2-2 Configure and verify interswitch connectivity (trunking, DTP, VTP)
2-3 Configure and verify Layer 2 discovery protocols (CDP, LLDP)
2-4 Configure and verify (Layer 2Layer 3) EtherChannel (LACP)
2-5 Describe the need for and basic operations of Rapid PVST+ Spanning Tree Protocol
2-6 Compare Cisco Wireless Architectures and AP modes
2-7 Describe physical infrastructure connections of WLAN components (AP, WLC, accesstrunk ports, and LAG)
2-8 Describe AP and WLC management access connections (Telnet, SSH, HTTP, HTTPS, console, and TACACS+RADIUS)
2-9 Configure the components of a wireless LAN access for client connectivity using GUI only
3 IP Connectivity
3-1 Interpret the components of routing table
3-2 Determine how a router makes a forwarding decision by default
3-3 Configure and verify IPv4 and IPv6 static routing
3-4 Configure and verify single area OSPF
3-5 Describe the purpose of first hop redundancy protocols
4 IP Services
4-1 Configure and verify inside source NAT using static and pools
4-2 Configure and verify NTP operating in a client and server mode
4-3 Explain the role of DHCP and DNS within the network
4-4 Explain the function of SNMP in network operations
4-5 Describe the use of syslog features including facilities and levels
4-6 Configure and verify DHCP client and relay
4-7 Explain the forwarding per-hop behavior (PHB) for QoS such as classification, marking, queuing, and congestion
4-8 Configure network devices for remote access using SSH
4-9 Describe the capabilities and function of TFTPFTP in the network
5 Security Fundamentals
5-1 Define key security concepts (threats, vulnerabilities, exploits, and mitigation techniques)
5-2 Describe security program elements (user awareness, training, and physical access control)
5-3 Configure and verify device access control using local passwords
5-4 Describe security password policies elements, such as management, complexity, and password alternatives (multifactor authentication, certificates, and biometrics)
5-5 Configure and verify access control lists (ACLs)
5-6 Configure and verify Layer 2 security features (DHCP snooping, dynamic ARP inspection, and port security)
5-7 Configure and verify IPv6 access control lists (ACLs)
5-8 Describe wireless security protocols (WPA, WPA2, and WPA3)
5-9 Configure and verify wireless security settings
5-10 Describe the components of a comprehensive security policy (acceptable use policy, password, updates, and patches)
6 Automation and Programmability
6-1 Explain how automation impacts network management
6-2 Compare traditional networks with controller-based networking
6-3 Describe controller-based and software defined architectures (overlay, underlay, and fabric)
6-4 Compare traditional campus device management with Cisco DNA Center enabled device management
6-5 Describe characteristics of REST-based APIs (CRUD, HTTP verbs, and data encoding)
6-6 Recognize the capabilities of configuration management mechanisms Puppet, Chef, and Ansible
6-7 Interpret JSON encoded data
6-8 Identify the appropriate Automation and Programmability solution for a given scenario
Compare TCP to UDP

Compare TCP to UDP

In networking, TCP (Transmission Control Protocol) and UDP (User Datagram Protocol) are two fundamental protocols used for transmitting data over the internet. Understanding their differences is crucial for designing efficient and reliable network applications.

TCP (Transmission Control Protocol)

TCP is a connection-oriented protocol that ensures reliable data transfer. It establishes a connection between the sender and receiver before data transmission begins. TCP guarantees that all data packets are delivered in the correct order and without errors.

Key Features:

Example: Think of TCP as a letter delivery service that ensures each letter (data packet) is delivered to the correct recipient (receiver) in the exact order it was sent, with confirmation of receipt.

UDP (User Datagram Protocol)

UDP is a connectionless protocol that does not establish a connection before sending data. It is faster but less reliable than TCP, as it does not guarantee data delivery, order, or error-checking.

Key Features:

Example: Consider UDP as a broadcast service where messages (data packets) are sent out without confirmation of who receives them or in what order. This is useful for live broadcasts where speed is more critical than accuracy.

Comparison

Aspect TCP UDP
Connection Connection-oriented Connectionless
Reliability High (guarantees delivery, order, and error-checking) Low (no guarantees)
Speed Slower due to overhead Faster due to less overhead
Use Cases Email, web browsing, file transfer Streaming, online gaming, VoIP

Understanding the differences between TCP and UDP allows network administrators and developers to choose the appropriate protocol based on the specific requirements of their applications, balancing reliability and speed.