Math for Grade 10
1 Number Systems
1-1 Introduction to Number Systems
1-2 Types of Numbers
1-2 1 Natural Numbers
1-2 2 Whole Numbers
1-2 3 Integers
1-2 4 Rational Numbers
1-2 5 Irrational Numbers
1-2 6 Real Numbers
1-3 Properties of Numbers
1-3 1 Commutative Property
1-3 2 Associative Property
1-3 3 Distributive Property
1-3 4 Identity Property
1-3 5 Inverse Property
1-4 Operations with Real Numbers
1-4 1 Addition
1-4 2 Subtraction
1-4 3 Multiplication
1-4 4 Division
1-4 5 Order of Operations (PEMDASBODMAS)
1-5 Exponents and Radicals
1-5 1 Exponent Rules
1-5 2 Scientific Notation
1-5 3 Square Roots
1-5 4 Cube Roots
1-5 5 nth Roots
1-6 Rationalizing Denominators
2 Algebra
2-1 Introduction to Algebra
2-2 Expressions and Equations
2-2 1 Simplifying Algebraic Expressions
2-2 2 Linear Equations
2-2 3 Quadratic Equations
2-2 4 Solving Equations with Variables on Both Sides
2-2 5 Solving Literal Equations
2-3 Inequalities
2-3 1 Linear Inequalities
2-3 2 Quadratic Inequalities
2-3 3 Absolute Value Inequalities
2-4 Polynomials
2-4 1 Introduction to Polynomials
2-4 2 Adding and Subtracting Polynomials
2-4 3 Multiplying Polynomials
2-4 4 Factoring Polynomials
2-4 5 Special Products
2-5 Rational Expressions
2-5 1 Simplifying Rational Expressions
2-5 2 Multiplying and Dividing Rational Expressions
2-5 3 Adding and Subtracting Rational Expressions
2-5 4 Solving Rational Equations
2-6 Functions
2-6 1 Introduction to Functions
2-6 2 Function Notation
2-6 3 Graphing Functions
2-6 4 Linear Functions
2-6 5 Quadratic Functions
2-6 6 Polynomial Functions
2-6 7 Rational Functions
3 Geometry
3-1 Introduction to Geometry
3-2 Basic Geometric Figures
3-2 1 Points, Lines, and Planes
3-2 2 Angles
3-2 3 Triangles
3-2 4 Quadrilaterals
3-2 5 Circles
3-3 Geometric Properties and Relationships
3-3 1 Congruence and Similarity
3-3 2 Pythagorean Theorem
3-3 3 Triangle Inequality Theorem
3-4 Perimeter, Area, and Volume
3-4 1 Perimeter of Polygons
3-4 2 Area of Polygons
3-4 3 Area of Circles
3-4 4 Surface Area of Solids
3-4 5 Volume of Solids
3-5 Transformations
3-5 1 Translations
3-5 2 Reflections
3-5 3 Rotations
3-5 4 Dilations
4 Trigonometry
4-1 Introduction to Trigonometry
4-2 Trigonometric Ratios
4-2 1 Sine, Cosine, and Tangent
4-2 2 Reciprocal Trigonometric Functions
4-3 Solving Right Triangles
4-3 1 Using Trigonometric Ratios to Solve Right Triangles
4-3 2 Applications of Right Triangle Trigonometry
4-4 Trigonometric Identities
4-4 1 Pythagorean Identities
4-4 2 Angle Sum and Difference Identities
4-4 3 Double Angle Identities
4-5 Graphing Trigonometric Functions
4-5 1 Graphing Sine and Cosine Functions
4-5 2 Graphing Tangent Functions
4-5 3 Transformations of Trigonometric Graphs
5 Statistics and Probability
5-1 Introduction to Statistics
5-2 Data Collection and Representation
5-2 1 Types of Data
5-2 2 Frequency Distributions
5-2 3 Graphical Representations of Data
5-3 Measures of Central Tendency
5-3 1 Mean
5-3 2 Median
5-3 3 Mode
5-4 Measures of Dispersion
5-4 1 Range
5-4 2 Variance
5-4 3 Standard Deviation
5-5 Probability
5-5 1 Introduction to Probability
5-5 2 Basic Probability Concepts
5-5 3 Probability of Compound Events
5-5 4 Conditional Probability
5-6 Statistical Inference
5-6 1 Sampling and Sampling Distributions
5-6 2 Confidence Intervals
5-6 3 Hypothesis Testing
1-6 Rationalizing Denominators Explained

1-6 Rationalizing Denominators Explained

Key Concepts of Rationalizing Denominators

Rationalizing the denominator is a process used to eliminate radicals from the denominator of a fraction. This is done to simplify the expression and make it easier to work with. The key steps involve multiplying both the numerator and the denominator by a conjugate of the denominator.

1. Rationalizing a Simple Radical Denominator

When the denominator is a single radical, such as \( \sqrt{a} \), you can rationalize it by multiplying both the numerator and the denominator by \( \sqrt{a} \).

Example:

Rationalize \( \frac{3}{\sqrt{5}} \):

Multiply by \( \frac{\sqrt{5}}{\sqrt{5}} \):

\[ \frac{3}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt{5}}{5} \]

2. Rationalizing a Binomial Denominator

When the denominator is a binomial containing a radical, such as \( a + \sqrt{b} \) or \( a - \sqrt{b} \), you can rationalize it by multiplying both the numerator and the denominator by the conjugate of the denominator.

Example:

Rationalize \( \frac{2}{3 + \sqrt{2}} \):

Multiply by \( \frac{3 - \sqrt{2}}{3 - \sqrt{2}} \):

\[ \frac{2}{3 + \sqrt{2}} \times \frac{3 - \sqrt{2}}{3 - \sqrt{2}} = \frac{2(3 - \sqrt{2})}{(3 + \sqrt{2})(3 - \sqrt{2})} \]

Simplify the denominator using the difference of squares:

\[ (3 + \sqrt{2})(3 - \sqrt{2}) = 9 - 2 = 7 \]

So, the expression becomes:

\[ \frac{2(3 - \sqrt{2})}{7} = \frac{6 - 2\sqrt{2}}{7} \]

3. Rationalizing a Complex Denominator

When the denominator is more complex, involving multiple radicals or terms, the same principles apply. You may need to use multiple steps to fully rationalize the denominator.

Example:

Rationalize \( \frac{1}{\sqrt{3} + \sqrt{2} - \sqrt{5}} \):

First, simplify the denominator by combining like terms:

\[ \sqrt{3} + \sqrt{2} - \sqrt{5} \]

Next, multiply by the conjugate of the denominator:

\[ \frac{1}{\sqrt{3} + \sqrt{2} - \sqrt{5}} \times \frac{\sqrt{3} + \sqrt{2} + \sqrt{5}}{\sqrt{3} + \sqrt{2} + \sqrt{5}} \]

Simplify the denominator using the difference of squares:

\[ (\sqrt{3} + \sqrt{2} - \sqrt{5})(\sqrt{3} + \sqrt{2} + \sqrt{5}) \]

This will result in a rational number, which can then be simplified further.

Why Rationalizing Denominators is Important

Rationalizing the denominator is important for several reasons: