Math for Grade 10
1 Number Systems
1-1 Introduction to Number Systems
1-2 Types of Numbers
1-2 1 Natural Numbers
1-2 2 Whole Numbers
1-2 3 Integers
1-2 4 Rational Numbers
1-2 5 Irrational Numbers
1-2 6 Real Numbers
1-3 Properties of Numbers
1-3 1 Commutative Property
1-3 2 Associative Property
1-3 3 Distributive Property
1-3 4 Identity Property
1-3 5 Inverse Property
1-4 Operations with Real Numbers
1-4 1 Addition
1-4 2 Subtraction
1-4 3 Multiplication
1-4 4 Division
1-4 5 Order of Operations (PEMDASBODMAS)
1-5 Exponents and Radicals
1-5 1 Exponent Rules
1-5 2 Scientific Notation
1-5 3 Square Roots
1-5 4 Cube Roots
1-5 5 nth Roots
1-6 Rationalizing Denominators
2 Algebra
2-1 Introduction to Algebra
2-2 Expressions and Equations
2-2 1 Simplifying Algebraic Expressions
2-2 2 Linear Equations
2-2 3 Quadratic Equations
2-2 4 Solving Equations with Variables on Both Sides
2-2 5 Solving Literal Equations
2-3 Inequalities
2-3 1 Linear Inequalities
2-3 2 Quadratic Inequalities
2-3 3 Absolute Value Inequalities
2-4 Polynomials
2-4 1 Introduction to Polynomials
2-4 2 Adding and Subtracting Polynomials
2-4 3 Multiplying Polynomials
2-4 4 Factoring Polynomials
2-4 5 Special Products
2-5 Rational Expressions
2-5 1 Simplifying Rational Expressions
2-5 2 Multiplying and Dividing Rational Expressions
2-5 3 Adding and Subtracting Rational Expressions
2-5 4 Solving Rational Equations
2-6 Functions
2-6 1 Introduction to Functions
2-6 2 Function Notation
2-6 3 Graphing Functions
2-6 4 Linear Functions
2-6 5 Quadratic Functions
2-6 6 Polynomial Functions
2-6 7 Rational Functions
3 Geometry
3-1 Introduction to Geometry
3-2 Basic Geometric Figures
3-2 1 Points, Lines, and Planes
3-2 2 Angles
3-2 3 Triangles
3-2 4 Quadrilaterals
3-2 5 Circles
3-3 Geometric Properties and Relationships
3-3 1 Congruence and Similarity
3-3 2 Pythagorean Theorem
3-3 3 Triangle Inequality Theorem
3-4 Perimeter, Area, and Volume
3-4 1 Perimeter of Polygons
3-4 2 Area of Polygons
3-4 3 Area of Circles
3-4 4 Surface Area of Solids
3-4 5 Volume of Solids
3-5 Transformations
3-5 1 Translations
3-5 2 Reflections
3-5 3 Rotations
3-5 4 Dilations
4 Trigonometry
4-1 Introduction to Trigonometry
4-2 Trigonometric Ratios
4-2 1 Sine, Cosine, and Tangent
4-2 2 Reciprocal Trigonometric Functions
4-3 Solving Right Triangles
4-3 1 Using Trigonometric Ratios to Solve Right Triangles
4-3 2 Applications of Right Triangle Trigonometry
4-4 Trigonometric Identities
4-4 1 Pythagorean Identities
4-4 2 Angle Sum and Difference Identities
4-4 3 Double Angle Identities
4-5 Graphing Trigonometric Functions
4-5 1 Graphing Sine and Cosine Functions
4-5 2 Graphing Tangent Functions
4-5 3 Transformations of Trigonometric Graphs
5 Statistics and Probability
5-1 Introduction to Statistics
5-2 Data Collection and Representation
5-2 1 Types of Data
5-2 2 Frequency Distributions
5-2 3 Graphical Representations of Data
5-3 Measures of Central Tendency
5-3 1 Mean
5-3 2 Median
5-3 3 Mode
5-4 Measures of Dispersion
5-4 1 Range
5-4 2 Variance
5-4 3 Standard Deviation
5-5 Probability
5-5 1 Introduction to Probability
5-5 2 Basic Probability Concepts
5-5 3 Probability of Compound Events
5-5 4 Conditional Probability
5-6 Statistical Inference
5-6 1 Sampling and Sampling Distributions
5-6 2 Confidence Intervals
5-6 3 Hypothesis Testing
4-4-3 Double Angle Identities Explained

4-4-3 Double Angle Identities Explained

Key Concepts of Double Angle Identities

Double Angle Identities are trigonometric formulas that express trigonometric functions of double angles (2θ) in terms of single angles (θ). Key concepts include:

1. Double Angle Identity for Sine

The double angle identity for sine is derived from the sum of angles formula for sine. It states:

\[ \sin(2\theta) = 2\sin(\theta)\cos(\theta) \]

Example:

If \( \sin(\theta) = \frac{1}{2} \) and \( \cos(\theta) = \frac{\sqrt{3}}{2} \), then \( \sin(2\theta) = 2 \cdot \frac{1}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2} \).

2. Double Angle Identity for Cosine

The double angle identity for cosine can be expressed in three forms, derived from the sum of angles formula for cosine. The most common form is:

\[ \cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) \]

Other forms include:

\[ \cos(2\theta) = 2\cos^2(\theta) - 1 \]

\[ \cos(2\theta) = 1 - 2\sin^2(\theta) \]

Example:

If \( \cos(\theta) = \frac{3}{5} \) and \( \sin(\theta) = \frac{4}{5} \), then \( \cos(2\theta) = \left(\frac{3}{5}\right)^2 - \left(\frac{4}{5}\right)^2 = \frac{9}{25} - \frac{16}{25} = -\frac{7}{25} \).

3. Double Angle Identity for Tangent

The double angle identity for tangent is derived from the sum of angles formula for tangent. It states:

\[ \tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)} \]

Example:

If \( \tan(\theta) = \frac{1}{2} \), then \( \tan(2\theta) = \frac{2 \cdot \frac{1}{2}}{1 - \left(\frac{1}{2}\right)^2} = \frac{1}{1 - \frac{1}{4}} = \frac{1}{\frac{3}{4}} = \frac{4}{3} \).

Examples and Analogies

To better understand double angle identities, consider the following analogy:

Imagine you are doubling the size of a pie. The double angle identities help you understand how the ingredients (sine, cosine, tangent) change when you double the size of the pie (angle).

Practical Applications

Understanding double angle identities is crucial for various real-world applications, such as: