CompTIA Security+
1 Threats, Attacks, and Vulnerabilities
1-1 Types of Threats
1-2 Types of Attacks
1-3 Vulnerabilities
1-4 Threat Actors and Motives
1-5 Threat Intelligence
1-6 Incident Response
1-7 Penetration Testing
1-8 Vulnerability Scanning
1-9 Threat Modeling
1-10 Security Controls
2 Technologies and Tools
2-1 Firewalls
2-2 Intrusion Detection Systems (IDS)
2-3 Intrusion Prevention Systems (IPS)
2-4 Security Information and Event Management (SIEM)
2-5 Data Loss Prevention (DLP)
2-6 Security Orchestration, Automation, and Response (SOAR)
2-7 Endpoint Security
2-8 Network Security
2-9 Cloud Security
2-10 Mobile Device Security
2-11 Secure Coding Practices
2-12 Cryptography
2-13 Public Key Infrastructure (PKI)
2-14 Certificate Management
2-15 Security Tools and Utilities
3 Architecture and Design
3-1 Security Models
3-2 Security Controls
3-3 Secure Network Design
3-4 Secure Systems Design
3-5 Secure Application Design
3-6 Secure Cloud Architecture
3-7 Secure Mobile Architecture
3-8 Secure IoT Architecture
3-9 Secure Data Storage
3-10 Secure Backup and Recovery
3-11 Security in DevOps
3-12 Security in Agile Development
3-13 Security in Continuous IntegrationContinuous Deployment (CICD)
3-14 Security in Configuration Management
3-15 Security in Identity and Access Management (IAM)
4 Identity and Access Management
4-1 Authentication Methods
4-2 Authorization Mechanisms
4-3 Identity and Access Management (IAM) Concepts
4-4 Single Sign-On (SSO)
4-5 Multi-Factor Authentication (MFA)
4-6 Federation
4-7 Role-Based Access Control (RBAC)
4-8 Attribute-Based Access Control (ABAC)
4-9 Identity as a Service (IDaaS)
4-10 Identity Lifecycle Management
4-11 Access Reviews and Audits
4-12 Privileged Access Management (PAM)
4-13 Identity Federation
4-14 Identity Provisioning and Deprovisioning
5 Risk Management
5-1 Risk Management Concepts
5-2 Risk Assessment
5-3 Risk Mitigation Strategies
5-4 Business Impact Analysis (BIA)
5-5 Risk Register
5-6 Risk Treatment
5-7 Risk Monitoring and Reporting
5-8 Risk Appetite and Tolerance
5-9 Risk Communication
5-10 Risk Transfer
5-11 Risk Acceptance
5-12 Risk Avoidance
5-13 Risk Reduction
5-14 Risk in Cloud Environments
5-15 Risk in Mobile Environments
5-16 Risk in IoT Environments
6 Cryptography and PKI
6-1 Cryptographic Concepts
6-2 Symmetric Encryption
6-3 Asymmetric Encryption
6-4 Hashing
6-5 Digital Signatures
6-6 Public Key Infrastructure (PKI)
6-7 Certificate Management
6-8 Certificate Authorities (CAs)
6-9 Certificate Revocation
6-10 Key Management
6-11 Cryptographic Protocols
6-12 Cryptographic Attacks
6-13 Quantum Cryptography
6-14 Post-Quantum Cryptography
6-15 Cryptographic Use Cases
7 Security Operations
7-1 Security Operations Concepts
7-2 Security Policies and Procedures
7-3 Security Awareness and Training
7-4 Security Monitoring and Logging
7-5 Incident Response
7-6 Forensics
7-7 Disaster Recovery
7-8 Business Continuity
7-9 Physical Security
7-10 Personnel Security
7-11 Supply Chain Security
7-12 Third-Party Risk Management
7-13 Security Audits and Assessments
7-14 Compliance and Regulatory Requirements
7-15 Security Metrics and Reporting
7-16 Security Operations Center (SOC)
7-17 Security Orchestration, Automation, and Response (SOAR)
7-18 Security in DevOps
7-19 Security in Agile Development
7-20 Security in Continuous IntegrationContinuous Deployment (CICD)
3.0 Architecture and Design Explained

3.0 Architecture and Design Explained

Key Concepts

Architecture and Design in cybersecurity refer to the planning and structuring of security measures to protect an organization's information systems. Key concepts include Defense in Depth, Zero Trust Architecture, and Security Zones.

Defense in Depth

Defense in Depth is a security strategy that employs a series of mechanisms to slow the advance of an attack aimed at acquiring unauthorized access to information. It involves layering security controls at different levels to provide multiple barriers against threats.

Example: Think of a castle with multiple layers of defense. The outer wall, moat, and inner keep each provide a different level of protection. If an attacker breaches one layer, they still face additional barriers before reaching the inner sanctum.

Zero Trust Architecture

Zero Trust Architecture (ZTA) is a security model that assumes that threats are already inside the network and therefore does not trust anyone by default. It requires continuous verification of the identity, context, and policy adherence of each user and device trying to access resources.

Example: Imagine a high-security facility where every door requires a different key and a retinal scan. Even if you have the key to the first door, you still need to pass through multiple checkpoints before reaching the core area. This ensures that no single breach can grant access to the entire facility.

Security Zones

Security Zones are segments of a network designed to isolate and protect different types of data and systems. Each zone has its own security policies and controls, ensuring that a breach in one zone does not automatically compromise the entire network.

Example: Consider an office building with separate sections for different departments, each with its own access controls. The finance department, for instance, might have stricter access requirements than the marketing department. This segmentation ensures that even if someone gains access to the marketing section, they cannot easily move into the finance section.

Conclusion

Understanding Architecture and Design concepts such as Defense in Depth, Zero Trust Architecture, and Security Zones is crucial for building a robust cybersecurity framework. By implementing these strategies, organizations can create multiple layers of protection, continuously verify access, and isolate critical assets, thereby enhancing their overall security posture.