Project Management Professional (PMP) for engineering project management roles
1 Introduction to Project Management
1-1 Definition of Project Management
1-2 Project Management Framework
1-3 Project Management Knowledge Areas
1-4 Project Management Processes
1-5 Project Life Cycle
2 Project Integration Management
2-1 Develop Project Charter
2-2 Develop Project Management Plan
2-3 Direct and Manage Project Work
2-4 Monitor and Control Project Work
2-5 Perform Integrated Change Control
2-6 Close Project or Phase
3 Project Scope Management
3-1 Plan Scope Management
3-2 Collect Requirements
3-3 Define Scope
3-4 Create WBS
3-5 Validate Scope
3-6 Control Scope
4 Project Time Management
4-1 Plan Schedule Management
4-2 Define Activities
4-3 Sequence Activities
4-4 Estimate Activity Durations
4-5 Develop Schedule
4-6 Control Schedule
5 Project Cost Management
5-1 Plan Cost Management
5-2 Estimate Costs
5-3 Determine Budget
5-4 Control Costs
6 Project Quality Management
6-1 Plan Quality Management
6-2 Perform Quality Assurance
6-3 Control Quality
7 Project Human Resource Management
7-1 Develop Human Resource Plan
7-2 Acquire Project Team
7-3 Develop Project Team
7-4 Manage Project Team
8 Project Communications Management
8-1 Plan Communications Management
8-2 Manage Communications
8-3 Control Communications
9 Project Risk Management
9-1 Plan Risk Management
9-2 Identify Risks
9-3 Perform Qualitative Risk Analysis
9-4 Perform Quantitative Risk Analysis
9-5 Plan Risk Responses
9-6 Control Risks
10 Project Procurement Management
10-1 Plan Procurement Management
10-2 Conduct Procurements
10-3 Control Procurements
10-4 Close Procurements
11 Project Stakeholder Management
11-1 Identify Stakeholders
11-2 Plan Stakeholder Management
11-3 Manage Stakeholder Engagement
11-4 Control Stakeholder Engagement
12 Engineering Project Management Specialization
12-1 Engineering Project Life Cycle
12-2 Engineering Project Planning and Scheduling
12-3 Engineering Project Cost Estimation
12-4 Engineering Project Risk Management
12-5 Engineering Project Quality Management
12-6 Engineering Project Procurement Management
12-7 Engineering Project Stakeholder Management
12-8 Engineering Project Communication Management
12-9 Engineering Project Integration Management
12-10 Engineering Project Human Resource Management
13 Tools and Techniques for Engineering Project Management
13-1 Project Management Software
13-2 Scheduling Tools
13-3 Cost Estimation Tools
13-4 Risk Management Tools
13-5 Quality Management Tools
13-6 Communication Tools
13-7 Stakeholder Management Tools
13-8 Procurement Management Tools
14 Case Studies and Practical Applications
14-1 Case Study Analysis
14-2 Practical Application of Project Management in Engineering Projects
14-3 Lessons Learned from Engineering Projects
15 Certification Preparation
15-1 Overview of PMP Certification Exam
15-2 Exam Format and Structure
15-3 Study Tips and Strategies
15-4 Practice Questions and Mock Exams
15-5 Certification Application Process
1-2 Project Management Framework

1.2 Project Management Framework - 1-2 Project Management Framework

The 1-2 Project Management Framework is a simplified yet powerful approach to managing engineering projects. It focuses on two key concepts that are essential for successful project execution: Planning and Execution.

1. Planning

Planning is the first and most critical step in the 1-2 Project Management Framework. It involves defining the project scope, setting objectives, identifying resources, and creating a detailed project schedule. Effective planning ensures that all stakeholders have a clear understanding of what needs to be achieved and how it will be accomplished.

Example: For a bridge construction project, planning would include determining the exact location, calculating the required materials, estimating the labor costs, and creating a timeline that outlines each phase of the construction process.

2. Execution

Execution is the second step in the 1-2 Project Management Framework. Once the project plan is in place, the focus shifts to implementing the plan. This involves coordinating resources, managing tasks, and ensuring that the project progresses according to the schedule. Effective execution requires continuous monitoring and adjustment to address any deviations from the plan.

Example: During the execution phase of the bridge construction project, engineers and construction workers would follow the detailed plan to lay the foundation, erect the steel beams, and install the decking. Regular progress meetings would be held to address any issues and ensure the project stays on track.

By mastering these two key concepts—Planning and Execution—engineers can effectively manage projects, deliver results on time, and ensure that the final outcome meets the desired specifications.